		-				
0 1	Ammonia is ma	nufactured from nitro	gen and hydro	gen by the Haber proc	cess:	
		N₂(g) + 3⊦	l₂(g) ≓ 2 NF	l ₃ (g)		
-	The forward rea	ction is exothermic.				
0 1 . 1	Nitrogen and hydrogen are needed to make ammonia.					
	What are the sources of these two materials?					
	Nitrogen	Air	[1]		[2 marks]	
I	Hydrogen	Methane/Natural ga	s [1]			
I	Not all the hydr	ogen and nitrogen rea	cts.			
0 1 . 2	Explain what ha	appens to the unreacte	ed nitrogen and	d hydrogen, and why?		
I	Recycled	[1]			[2 marks]	
:	So that it is not nitrogen and hy	wasted or to save rav drogen. [1]	/ materials or l	ess cost on raw mate	erials /	
0 2	In this question information cle	you will be assessed arly and using special	on using good ist terms where	English, organising e appropriate.		
-	The conditions	used in the Haber pro	cess are:			
	200 a	tmospheres pressur	e 450°C	iron		
0 2 . 1	Use the equatic conditions are u	on and your knowledge used in the Haber proc	e of reversible r ess.	reactions to explain w	hy these	
-	To get full mark answer.	s you must consider b	ooth yield and i	rate of reaction in you	ır	
					[6 marks]	
·	Level 3: Deta together with and well-struc demonstrating	iled and coherent cor an evaluation are give tured. A range of rele g a broad understandi	nclusions base en in a respon evant points is ng of the key s	d on the evidence se that is coherent made scientific ideas.	5-6	
	Level 2: An a or to make ar builds toward	ttempt to relate relevant n evaluation. The logic s a coherent argume	ant points and c may be incor nt.	draw conclusions nsistent at times but	3-4	
	Level 1: Simp unclear and a the reasoning	ble descriptive statem ny conclusions, if pre	ents are made sent, may not	e. The logic may be be consistent with	1-2	

Examples of chemistry points made in the response:

200 atmospheres pressure
High pressure gives a high yield of ammonia
Too high a pressure causes risk of explosion
High pressure costly to maintain
A high pressure will cause the rate to be higher
4 moles of gas become 2 (or fewer moles of gas in products)
450°C
High temperature increases the rate of reaction
Optimum temperature
(Forward reaction is exothermic so) a high yield of ammonia requires a low
temperature but too low a temperature causes the rate of reaction to be too
slow
Iron catalyst
A catalyst speeds up the reaction
An iron catalyst allows a lower temperature to be used (saving energy and
causing a higher yield)
Iron catalyst increases the rate of reaction equally in both reactions
Others
Compromise conditions
Unreacted nitrogen and hydrogen is recycled

Ammonia is a very useful chemical. It is produced from nitrogen and hydrogen. The equation for the reaction is:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$$

A company wants to make 13.6 tonnes of ammonia.

Calculate the mass of nitrogen needed.

Relative atomic masses (Ar): H = 1; N = 14

RFM $N_2 = 28$ $2NH_3 = 34$ [1] 28/34 x 13.6 = 11.2 [1]

The company expected to make 13.6 tonnes of ammonia. The yield of ammonia was only 8.4 tonnes.

Calculate the percentage yield of ammonia.

8.4 / 13.6 x 100 Percentage yield of ammonia = <u>61.8</u> %

Use the equation above to explain why the percentage yield of ammonia was less than expected.

[1]

[1]

Reaction is reversible [1]

End of Question

[3 marks]

[2 marks]

[1 mark]

(Total 16 marks)