Clean drinking water is important for health. In the UK water from reservoirs goes through a series of steps before it is safe to drink.
[2 marks]

What are the two mains steps used to treat water from reservoirs?
Give a reason for each step.

Step 1 \qquad

Reason \qquad

Step 2 \qquad

Reason \qquad

Explain why it is more difficult to produce drinking water from waste water than from water in lakes.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
a) Pure water can be produced by distillation.

Why is distillation not usually an economic method of treating water for drinking?
\qquad
\qquad
b) How could the water be tested to show it is pure? Give the expected result of the test for pure water.
\qquad
\qquad

A student wanted to find out how much solid was dissolved in sea water. This is the method the student used:

- measure the mass of an empty evaporating basin
- measure $25 \mathrm{~cm}^{3}$ of sea water and pour it into the evaporating basin
- heat the evaporating basin gently until all of the water has evaporated
- measure the mass of the evaporating basin containing the solid residue.
(a) What piece of apparatus would be suitable for measuring $25 \mathrm{~cm}^{3}$ of sea water?
(b) How could the student check that all of the water had evaporated?
[2 marks]
\qquad
\qquad

The results the student obtained using $25 \mathrm{~cm}^{3}$ of sea water are:
mass of empty evaporating basin $=23.21 \mathrm{~g}$ mass of evaporating basin and dry solid residue $=24.04 \mathrm{~g}$

Calculate the mass of solid dissolved in $1000 \mathrm{~cm}^{3}$ of the sea water.
\qquad
\qquad
Mass dissolved in $1000 \mathrm{~cm}^{3}=$ \qquad g
(Total 13 marks)

End

