Chemical measurements

- Balanced chemical equations
- Conservation of mass
- Relative formula mass

Use of amount of substance (HT)

- Amounts of substances in equations (HT)
- Quantities in equations (HT)
- Using moles to balance equations (HT)
- Limiting reactants (HT)
- Concentrations of solutions

Quantities (chemistry only)

- Percentage yield
- Atom economy
- Moles of solutions and gases (HT)

Quantitative chemistry

mnolution search strategy inter movation experience learning ness learning

Know lT!

Chemical Measurements PART 1

- Balanced chemical equations
- Conservation of mass

Chemical measurements - PART 1

Chemical equations can be very useful.
The law of conservation states that no atoms are lost or made during a chemical reaction so the mass of the product equals the mass of the reactants. Chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.

State symbols $\mathbf{s}, \mathbf{l}, \mathbf{g}$ and aq are used in symbol equations.
When hydrogen molecules react with chlorine molecules, they make hydrogen chloride molecules:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}
$$

This equation shows the reactants and products, but it is not balanced.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

This balanced equation shows that one hydrogen molecules reacts with one chlorine molecule to form two molecules of hydrochloric acid.

Chemical measurements - PART 1

When magnesium is heated in a crucible it reacts with oxygen and forms magnesium oxide:

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

This equation shows that two magnesium atoms react with one oxygen molecule to form two magnesium oxide compounds.

Here are the results from the reaction:

Mass of crucible at the start of the reaction	0.23
Mass of crucible at end of reaction	0.41

Some reactions may appear to involve a change in mass but this can be explained because a reactant or product is usually a gas and its mass has not been taken into account.
In this example, the mass of the magnesium oxide produced is greater than the mass of the original metal.

Chemical measurements - PART 1

When calcium carbonate thermally decomposes it forms calcium oxide and carbon dioxide:

$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

This equation shows that one calcium carbonate compound (made from one calcium, one carbon and three oxygen atoms) forms one calcium oxide compound and one carbon dioxide molecule.

Here are the results from the reaction:

	Mass in g
Mass of metal carbonate at the start of the reaction	0.54
Mass of metal carbonate at end of reaction	0.36

In thermal decomposition of metal carbonates, carbon dioxide is produced and escapes into the atmosphere leaving the metal oxide as the only solid product.
In this example, the mass of the calcium oxide produced is less than the mass of the metal carbonate formed.

Whenever a measurement is taken, there is always some uncertainty about the result obtained that may have come from a variety of sources within the investigation. It is useful to determine whether the mean value falls within the range of uncertainty of the result.

Chemical measurements - PART 1

molecule.

Here are the results from the reaction:
Mass in g
Mass of metal carbonate at the 0.54 start of the reaction

Mass of metal carbonate at
0.36 end of reaction

$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

This equation shows that one calcium carbonate compound (made from one calcium, one carbon and three oxygen atoms) forms one calcium oxide compound and one carbon dioxide

Mass of metal carbonate at the start of the reaction	0.54
Mass of metal carbonate at end of reaction	0.36

In thermal decomposition of metal carbonates, carbon dioxide is produced and escapes into the atmosphere leaving the metal oxide as the only solid product.
In this example, the mass of the calcium oxide produced is less than the mass of the metal carbonate formed.

Whenever a measurement is taken, there is always some uncertainty about the result obtained that may have come from a variety of sources within the investigation. It is useful to determine whether the mean value falls within the range of uncertainty of the result.

QuestionIT!

Chemical Measurements PART 1

- Balanced chemical equations
- Conservation of mass

1. What is the law of conservation of mass?
2. Why might some reactions appear to show a change in mass?
3. Give two examples of a reaction where a change in mass may appear to take place.
4. Balance the following equations:
a) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Ca}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
c) $\mathrm{Li}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{LiOH}+\mathrm{H}_{2}$
d) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{O}$
5. How many atoms and elements are in the compound sodium aluminate, $\mathrm{NaAl}(\mathrm{OH})_{4}$?
6. What do the following formulae tell you?
a) 2 HCl
b) Cl_{2}
7. An aqueous solution of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposes to form water and oxygen.
a) Write a balanced symbol equation for this reaction. Include the state symbols.
b) Why does the water, produced during the reaction, have a lower mass than the original hydrogen peroxide?

AnswerIT!

Chemical Measurements

PART 1

- Balanced chemical equations
- Conservation of mass

1. What is the law of conservation of mass? Mass of reactants = mass products.
2. Why might some reactions appear to show a change in mass? A reactant or a product is a gas.
3. Give two examples of a reaction where a change in mass may appear to take place.
Metal reacting with oxygen or an acid. Thermal decomposition.
4. Balance the following equations:
a) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
c) $2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{LiOH}+\mathrm{H}_{2}$
d) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
e) $4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}$
5. How many atoms and elements are in the compound sodium aluminate, $\mathrm{NaAl}(\mathrm{OH})_{4}$?
Four elements and ten atoms.
6. What do the following formulae tell you?
a) 2 HCl

Two molecules of hydrogen chloride. Each molecule contains one hydrogen atom and one chlorine atom
b) Cl_{2}

One molecule of chlorine made of two atoms.
3. An aqueous solution of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposes to form water and oxygen.
a) Write a balanced symbol equation for this reaction. Include the state symbols.
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
b) Why does the water, produced during the reaction, have a lower mass than the original hydrogen peroxide? Because the oxygen gas produced during the reaction escaped into the atmosphere.

Know lT!

 Chemical Measurements PART 2miknowledge mosuluion search strategy int wy movation experience learning ness learning $75 p i m$

- Relative formula mass

Chemical measurements - PART 2

Relative formula mass (\mathbf{M}_{r}) of a compound is the sum of the relative atomic masses of the atoms in the numbers shown in the formula.

The relative atomic masses can be found in the periodic table

In a balanced chemical equation, the sum of the relative formula masses of the reactants equals the sum of the relative formula masses of the products.
For example:

$$
\begin{aligned}
2 \mathrm{Mg}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{MgO} \\
(2 \times 24)+(2 \times 16) & \rightarrow 2 \times(24+16) \\
80 & \rightarrow 80
\end{aligned}
$$

QuestionIT!

Chemical Measurements PART 2

- Relative formula mass

1. What is the relative formula mass of a compound?
2. What is the relative formula mass of:
a) MgCl_{2}
b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
3. What can be said about the sum of the relative formula masses of the reactants and products of a reaction?
4. Why can you have relative atomic masses which are not whole numbers e.g. chlorine is 35.5 ?

AnswerIT!

Chemical Measurements

 PART 2- Relative formula mass

1. What is the relative formula mass of a compound? Sum of the relative atomic masses of the atoms in the numbers shown in the formula.
2. What is the relative formula mass of:
a) $\mathrm{MgCl}_{2} 95$
b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} 180$
3. What can be said about the sum of the relative formula masses of the reactants and products of a reaction?
In a balanced chemical equation - the sum of the relative formula masses of the reactants in the quantities shown = sum of the relative formula masses of the products in the quantities shown.
4. Why can you have relative atomic masses which are not whole numbers e.g. chlorine is 35.5 ?
Isotopes.

LearnIT!

KnowlT!

 Use of amount of mollution search strategy intea- Moles (HT)
- Amounts of substances in equat ons
- Quantities in equations (HT)
- Using moles to balance equations (HT)
- Limiting reactants (HT)

Use of amount of substance - PART 1

Chemical amounts are measured in moles. The symbol for the unit mole is mol.

The mass of one mole of a substance in grams is numerically equal to its relative formula mass. One mole of a substance contains the same number of the stated particles, atoms, molecules or ions as one mole of any other substance.

The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole.

How many moles of sulfuric acid molecules are there in 4.7 g of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$? Give your answer to 1 significant figure.

$$
\frac{4.7}{98}=0.05 \mathrm{~mol}
$$

Mass (g) = number of moles $\times A_{r}$ or number of moles $\times \mathrm{M}_{r}$

What is the mass of 7.2×10^{-3} moles of aluminium sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$? Give your answer to 1 decimal place.

$$
7.2 \times 10^{-3} \times 342=2.5 \mathrm{~g}
$$

The masses of reactants and products can be calculated from balanced symbol equations.
Chemical equations can be interpreted in terms of moles. Example:

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

This equation shows that one mole of hydrogen reacts with one mole of chlorine to form two moles of hydrochloric acid.
The balanced equation is useful because it can be used to calculate what mass of hydrogen and chlorine react together and how much hydrogen chloride is made.

```
A
so mass of 1 mole of H2 =2 x1=2g
A
Mr}: \textrm{HCl}(1+35.5
so mass of 1 mole of Cl2 = 35.5 <2 = 71g
so mass of 1 mole of HCl = 36.5g
```

The balanced equation tells us that one mole of hydrogen reacts with one mole of chlorine to give two moles of hydrogen chloride molecules, so turning this to masses:
1 mole of hydrogen
1 mole of chlorine
2 moles of hydrochloric acid

$$
\begin{array}{ll}
=1 \times 2 & =2 \mathrm{~g} \\
=1 \times 71 & \\
=2 \times 36.5 & =73 \mathrm{~g} \\
=2 \times 36
\end{array}
$$

Sodium hydroxide reacts with chlorine to make bleach:

$$
2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaOCl}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

If you have a solution containing 100.0 g of sodium hydroxide, what mass of chlorine gas do you need to convert it to bleach?
$\mathrm{M}_{\mathrm{r}}: \mathrm{NaOH}(23+16+1) \quad$ so mass of 1 mole of $\mathrm{NaOH}=40 \mathrm{~g}$
$\mathrm{M}_{\mathrm{r}}: \mathrm{Cl}_{2}(35.5 \times 2) \quad$ so mass of 1 mole of $\mathrm{Cl}_{2}=71 \mathrm{~g}$

So 100.0 g of sodium hydroxide is $100 / 40=2.5$ moles
The balanced symbol equation tells us that for every two moles of sodium hydroxide, you need one mole of chlorine to react with it.
So you need $2.5 / 2=1.25$ moles of chlorine
One mole of chlorine is 71 g , so you will need $1.25 \times 71 \mathrm{~g}=88.75 \mathrm{~g}$ of chlorine to react with 100.0 g of sodium hydroxide.

The balancing numbers in a symbol equation can be calculated from the masses of reactants and products by converting the masses in grams to amounts in moles and converting the number of moles to simple whole number ratios.
8.5 g of sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ is heated until its mass is constant. 6.9 g of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ and 1.6 g of oxygen gas $\left(\mathrm{O}_{2}\right)$ is produced.

$$
\mathrm{NaNO}_{3} \rightarrow \mathrm{NaNO}_{2}+\mathrm{O}_{2}
$$

$\mathrm{Mr}_{\mathrm{r}}: \mathrm{NaNO}_{3}=23+14+(16 \times 3)=85$
$\mathrm{Mr}_{\mathrm{r}}: \mathrm{NaNO}_{2}=23+14+(16 \times 2)=69$
$\mathrm{M}_{\mathrm{r}}: \mathrm{O}_{2}=16 \times 2=32$

$$
\text { Number of moles }=\frac{\text { mass }(\mathrm{g})}{M_{r}}
$$

Then to convert masses to moles use:
Moles of $\mathrm{NaNO}_{3}=8.5 / 85=0.1 \mathrm{~mol}$
Moles of $\mathrm{NaNO}_{2}=6.9 / 69=0.1 \mathrm{~mol}$

$$
\begin{array}{clll}
\mathrm{NaNO}_{3} & : \mathrm{NaNO}_{2} & : & \mathrm{O}_{2} \\
0.01 & : & 0.01 & : \\
0.05
\end{array}
$$

$$
\text { Moles of } \mathrm{O}_{2}=1.6 / 32=0.05 \mathrm{~mol}
$$

Dividing the ratio by the smallest number gives 2:2:1 $2 \mathrm{NaNO}_{\mathbf{3}} \rightarrow 2 \mathrm{NaNO}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}}$

In a chemical reaction involving two reactants, it is common to use an excess of one of the reactants to ensure that all the reactant is used up. The reactant that is completely used up is called the limiting reactant because it limits the amount of products.
4.8 g of magnesium ribbon reacts with 7.3 g of HCl . Which is the limiting reactant?

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

$\mathrm{A}_{\mathrm{r}}: \mathrm{Mg}(24)$ and $\mathrm{A}_{\mathrm{r}}: \mathrm{Cl}(35.5)$
4.8 g of $\mathrm{Mg}=4.8 / 24$ moles $=0.2 \mathrm{~mol}$
7.3 g of $\mathrm{HCl}=7.3 / 36.5$ moles $=0.2 \mathrm{~mol}$

From the balanced equation:
$\mathbf{1}$ mole of $\mathbf{~ M g}$ reacts with $\mathbf{2}$ moles of HCl , therefore 0.2 mol of Mg will need 0.4 mol of HCl to react completely, there is only 0.2 mol of HCl , so the HCl is the limiting reactant.

QuestionIT!

 Use of amount of substance PART 1- Moles (HT)
- Amounts of substances in equations (HT)
- Quantities in equations (HT)
- Using moles to balance equations (HT)
- Limiting reactants (HT)

1. What is meant by the term 'mole'?
2. What is the symbol for the unit mole?
3. What does 'Avogadro's constant' tell us?
4. What is the value for Avogadro's constant?
5. How many atoms in 1 mole of carbon?
6. How many atoms in 1 mole of chlorine gas, Cl_{2} ?
7. What can the following equation tell us about the number of moles of each substance?

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

8. What is meant by the term 'limiting reactant'?
9. How many moles of helium atoms are there in 0.04 g of helium?
10. What is the mass of 20 moles of calcium carbonate CaCO_{3} ? Answer in kg.
11. Calcium carbonate decomposes to calcium oxide in a kiln in the following reaction: $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
Calculate the mass of calcium oxide that can be produced when 300 tonnes of calcium carbonate is heated.
12. 0.10 g of hydrogen reacts with 3.55 g of chlorine to produce 3.65 g of hydrogen chloride. Use this information to work out the balancing numbers for hydrogen chloride.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \ldots \mathrm{HCl}
$$

13. If 4.95 g of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ are combusted with 3.25 g of oxygen, what is the limiting reactant?

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

AnswerIT!

Use of amount of substance
 PART 1

- Moles (HT)
- Amounts of substances in equations (HT)
- Quantities in equations (HT)
- Using moles to balance equations (HT)
- Limiting reactants (HT)

1. What is meant by the term 'mole'?

A measure of the chemical amount of a substance.
2. What is the symbol for the unit mole?
mol
3. What does 'Avogadro's constant' tell us?

Number of atoms, molecules or ions in a mole of a substance.
4. What is the value for Avogadro's constant?
6.02×10^{23} per mol
5. How many atoms in 1 mole of carbon?
6.02×10^{23}
6. How many atoms in 1 mole of chlorine gas, Cl_{2} ? 6.02×10^{23}
7. What can the following equation tell us about the number of moles of each substance?

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

1 mole of magnesium reacts with 2 moles of hydrochloric acid to form 1 mole of magnesium chloride and 1 mole of hydrogen.
8. What is meant by the term 'limiting reactant'?

A reactant in a reaction which is completely used up when the other reactant is in excess.
9. How many moles of helium atoms are there in 0.04 g of helium? $0.04 / 4=0.01 \mathrm{~mol}$
10. What is the mass of 20 moles of calcium carbonate CaCO_{3} ?

Answer in kg.
$40+12+(16 x 3)=100$
$100 \times 20=2,000 \mathrm{~g}=2 \mathrm{~kg}$.
11. Calcium carbonate decomposes to calcium oxide in a kiln in the following reaction: $\mathrm{CaCO}_{3} \rightarrow \mathbf{C a O}+\mathrm{CO}_{2}$
Calculate the mass of calcium oxide that can be produced when 300 tonnes of calcium carbonate is heated.
Relative formula mass of calcium carbonate $=100=100 \mathrm{~g}$
Relative formula mass of calcium oxide $=56=56 \mathrm{~g}$ 100 tonnes of calcium carbonate makes 56 tonnes of calcium oxide
so 300 tonnes make 168 tonnes
12. 0.10 g of hydrogen reacts with 3.55 g of chlorine to produce 3.65 g of hydrogen chloride. Use this information to work out the balancing numbers for hydrogen chloride.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \ldots \quad \mathrm{HCl}
$$

$M_{r}: H_{2}=1 \times 2=2$
$\mathrm{M}_{\mathrm{r}}: \mathrm{Cl}_{2}=35.5 \times 2=71$
$M_{r}: ~ H C l=1+35.5=36.5$

Then to convert masses to moles use:
Moles of $\mathrm{H}_{2}=0.10 / 2=0.05 \mathrm{~mol}$
Moles of $\mathrm{Cl}_{2}=3.55 / 71=0.05 \mathrm{~mol}$
Moles of $\mathrm{HCl}=3.65 / 36.5=0.1 \mathrm{~mol}$
Dividing the ratio by the smallest number gives 1:1:2
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
13. If 4.95 g of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ are combusted with 3.25 g of oxygen, what is the limiting reactant?

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$M_{r}: C_{2} H_{4}=28$
$\mathrm{M}_{\mathrm{r}}: \mathrm{O}_{2}=32$
4.95/28 = 0.177 mol
3.25/32 = 0.102 mol

From the equation: 1 mole of ethene reacts with 3 moles of oxygen. In this case 0.177 mol of ethene will need 0.53 mol of oxygen to react, which we do not have, so oxygen is the limiting factor.

LearnIT!

 KnowlT!

 KnowlT! -nwicaga msolution search strategy inter

 Use of amount of mool science knowledge substance ness learnim PART 2- Concentration of solutions

Calculations - PART 2

Chemists quote the amount of substance (solute) dissolved in a certain volume of the solution. The units used to express the concentration can be grams per decimetre cubed ($\mathrm{g} / \mathrm{dm}^{\mathbf{3}}$). A decimetre ($\mathbf{1 d m}{ }^{\mathbf{3}}$) cubed is equal to $1000 \mathrm{~cm}^{3}$.

The blackcurrant juice is getting more concentrated - the darker colour indicates more squash is in the same volume of its solution

If you know the mass of the solute dissolved in a certain volume of solution, you can work out the concentration using:

Concentration = amount of solute (g)
$\left(\mathrm{g} / \mathrm{dm}^{3}\right) \quad$ Volume of solution (dm^{3})
Remember if you are using cm^{3} to multiply the volume by 1000 to covert to dm^{3}

Example 1:
50 g of sodium hydroxide is dissolved in water to make up $200 \mathrm{~cm}^{3}$.

What is the concentration in $d m^{3}$?
$50 \mathrm{~g} / 200 \mathrm{~cm}^{3}=0.25 \mathrm{~g} / \mathrm{cm}^{3}$
$0.25 \mathrm{~g} / \mathrm{cm}^{3} \times 1000=250 \mathrm{~g} / \mathrm{dm}^{3}$

Example 2:
A solution of sodium chloride has a concentration of $200 \mathrm{~g} / \mathrm{dm}^{3}$.

What is the mass of sodium chloride in $700 \mathrm{~cm}^{3}$ of solution?

Convert $700 \mathrm{~cm}^{3}$ into dm^{3}
$700 / 1000=0.7 \mathrm{dm}^{3}$
Then rearrange the equation
amount of solute $=$ concentration x volume of solution
$(g) \quad\left(\mathrm{g} / \mathrm{dm}^{3}\right) \quad\left(\mathrm{dm}^{3}\right)$
$200 \mathrm{~g} / \mathrm{dm}^{3} \times 0.7 \mathrm{dm}^{3}=140 \mathrm{~g}$

HIGHER:

You can increase the concentration of an aqueous solution by:

- Adding more solute and dissolving it in the same volume of its solution.
- Evaporating off some of the water from the solution so you have the same mass of solute in a smaller volume of solution.

QuestionIT!

Use of amount of substance PART 2

- Concentration of solutions

1. What units can be used for the concentration of a solution?
2. What does dm^{3} mean?
3. Give the equation for calculating concentration from the mass of substance and volume of solution.
4. HT Only: How can you increase the concentration of an aqueous solution?
5. Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ for 50 g of sodium chloride in $2.5 \mathrm{dm}^{3}$ of water.
6. Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of 1.4 g of potassium carbonate in $855 \mathrm{~cm}^{3}$ of water.
7. A teacher has a solution of lithium fluoride with a concentration of $72.6 \mathrm{~g} / \mathrm{dm}^{3}$. Calculate the mass of lithium fluoride dissolved in $25.0 \mathrm{~cm}^{3}$ of solution.

AnswerIT!

Use of amount of substance
PART 2

- Concentration of solutions

1. What units can be used for the concentration of a solution? $\mathrm{g} / \mathrm{dm}^{3}$
2. What does dm^{3} mean?
$1000 \mathrm{~cm}^{3}$
3. Give the equation for calculating concentration from the mass of substance and volume of solution.
Concentration $=$ mass \div volume
4. HT Only: How can you increase the concentration of an aqueous solution?
Add more solute and dissolve in the same volume of water; evaporate off some of the water/decrease the volume of water
5. Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ for 50 g of sodium chloride in $2.5 \mathrm{dm}^{3}$ of water.
$50 / 2.5=20 \mathrm{~g} / \mathrm{dm}^{3}$
6. Calculate the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of 1.4 g of potassium carbonate in $855 \mathrm{~cm}^{3}$ of water.
$(1.4 / 855) \times 1000=1.64 \mathrm{~g} / \mathrm{dm}^{3}$
7. A teacher has a solution of lithium fluoride with a concentration of $72.6 \mathrm{~g} / \mathrm{dm}^{3}$. Calculate the mass of lithium fluoride dissolved in $25.0 \mathrm{~cm}^{3}$ of solution.
$25 \mathrm{~cm}^{3}=0.025 \mathrm{dm}^{3}$
$72.6 \times 0.025=1.8 \mathrm{~g}$

LearnIT! Know IT! solution search strategy int eg novation experience learning ness lear ming

- Percentage yield
- Atomy economy

Yield and atom economy - CHEMISTRY ONLY

Even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of product because:

- The reaction may not go to completion because it is reversible
- Some of the product may be lost when it is separated from the reaction mixture
- Some of the reactants may react in ways different to the expected reactions

The amount of product obtained is known as the yield.

The theoretical yield is the maximum calculated amount of a product that could be formed from a given amount of reactants.

The actual yield is the actual amount of product obtained from a chemical reaction.

Yield and atom economy - CHEMISTRY ONLY

When compared with the maximum theoretical amount as a percentage, it is called the percentage yield and is calculated as:

Percentage yield $=\ldots$ mass of product actually made \quad x 100
maximum theoretical mass of product

A piece of sodium metal is heated in chlorine gas. A maximum theoretical mass of 10 g for sodium chloride was calculated, but the actual yield was only 8 g .
Calculate the percentage yield.

Percentage yield $=8 / 10 \times 100$
= 80\%

This means the percentage yield is 80\%

HIGHER:

200 g of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

$$
\begin{gathered}
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\
\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{CaCO}_{3}=40+12+(16 \times 3)=100 \\
\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{CaO}=40+16=56
\end{gathered}
$$

100 g of CaCO_{3} would make 56 g of CaO So 200 g would make 112 g

Yield and atom economy - CHEMISTRY ONLY

The atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products. It is important for sustainable development and for economic reasons to use reactions with high atom economy.

The percentage atom economy is calculated using a balanced equation for the reaction as follows:

Example: Relative formula mass of desired product from equation $\times 100$ Sum of relative formula mass of all reactants from equation

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

M_{r} of $\mathrm{H}_{2}=1+1=2$
\mathbf{M}_{r} of $\mathrm{ZnCl}_{2}=65+35.5+35.5=136$
Atom economy $=2 / 136+2 \times 100$

$$
=2 / 138 \times 100=1.45 \%
$$

This method is unlikely to be chosen as it has a low atom economy.
The less waste there is, the higher the atom economy, the less materials are wasted, less energy used, so making the process more economic, 'greener' and sustainable.

QuestionIT!

Yield and

 atom economy PART 1 CHEMISTRY ONLY- Percentage yield
- Atomy economy

1. What is meant by the term 'yield'?
2. What is the equation for calculating percentage yield?
3. Give 2 reasons why it is not always possible to obtain the expected amount of product from a reaction.
4. What is meant by the term 'atom economy'?
5. Why is it important to use reactions with high atom economy?
6. What is the equation for calculating the percentage atom economy from a balanced chemical equation?
7. Magnesium is heated in air to make magnesium oxide. Suggest why the actual yield might be less than the maximum theoretical yield.
8. In the neutralisation of sulfuric acid with sodium hydroxide, the theoretical yield from 13.8 g of sulfuric acid is 20 g . In a synthesis, the actual yield is 17.4 g . What is the percentage yield for this synthesis?
9. Calculate the atom economy for making hydrogen from methane and steam.

$$
\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+4 \mathrm{H}_{2}
$$

AnswerIT!

Yield and atom economy

CHEMISTRY ONLY

- Percentage yield
- Atomy economy

1. What is meant by the term 'yield'? Amount of product obtained.
2. What is the equation for calculating percentage yield?
$\%$ yield $=\frac{\text { mass of product actually made }}{\text { Maximum theoretical mass of product }} \times 100$
3. Give 2 reasons why it is not always possible to obtain the expected amount of product from a reaction.
Reaction may not go to completion as it is reversible; some product may be lost; some reactants may react differently to expected.
4. What is meant by the term 'atom economy'?

Measure of the amount of starting materials that end up as useful products.
5. Why is it important to use reactions with high atom economy? Sustainable development; less waste products produced; economically viable; cheaper.
6. What is the equation for calculating the percentage atom economy from a balanced chemical equation?
Atom economy $=\frac{\text { RFM of desired product }}{\text { Sum of RFM of all reactants }} \times 100$
7. Magnesium is heated in air to make magnesium oxide. Suggest why the actual yield might be less than the maximum theoretical mass.
Magnesium nitride is formed as well as the magnesium oxide expected/some of the oxide might escape as smoke/not all the magnesium reacts.
8. In the neutralisation of sulfuric acid with sodium hydroxide, the theoretical mass from 13.8 g of sodium sulfate is 20 g . In a synthesis, the actual yield is 17.4 g . What is the percentage yield for this synthesis?
Percentage yield $=$ (actual yield \div theoretical mass) $\times 100$
Percentage yield $=(17.4 \div 20) \times 100=87 \%$
9. Calculate the atom economy for making hydrogen from methane and steam.

$$
\begin{gathered}
\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+4 \mathrm{H}_{2} \\
\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{O}=(1 \times 2)+16=18 \\
18 \times 2=36 \\
M_{r} \text { of } \mathrm{CH}_{4}=12+(1 \times 4)=16
\end{gathered}
$$

Atom economy $=4 \times 2 / 36+16 \times 100$

$$
=8 / 52 \times 100=15.4 \%
$$

LearnT!
 Know lT! Quantities CHEMISTRY ONLY ness learní

- Moles of solution and gases (H 1

Quantities - CHEMISTRY ONLY

 HigherThe concentration of a solution is the amount of solute per volume of solution.
Chemists measure concentration in moles per cubic decimetre ($\mathrm{mol} / \mathrm{dm}^{3}$).

$$
\begin{gathered}
\text { Concentration } \\
\left(\mathrm{mol} / \mathrm{dm}^{3}\right)
\end{gathered}=\frac{\text { amount }(\mathrm{mol})}{\text { volume }\left(\mathrm{dm}^{3}\right)}
$$

Example 1:
What is the concentration of a solution that has 35.0 g of solute in $0.5 \mathrm{dm}^{3}$ of solution?

$$
35 / 0.5=70 \mathrm{~g} / \mathrm{dm}^{3}
$$

Example 2:
Calculate the mass of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ if there is $1 \mathrm{dm}^{3}$ of a $1 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.

Mass of 1 mole of magnesium chloride $=$ $24+(35.5 \times 2)=95 \mathrm{~g}$
So there are 95 g of magnesium chloride in $1 \mathrm{dm}^{3}$ of a $1 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.

Quantities - CHEMISTRY ONLY

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution can be calculated.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

It takes $12.20 \mathrm{~cm}^{3}$ of sulfuric acid to neutralise $24.00 \mathrm{~cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{g} / \mathrm{dm}^{3}$
 $0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{x}(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH

The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is $(0.012 / 2)=0.006 \mathrm{~mol}$ of sulfuric acid

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$ $0.006 \mathrm{~mol} \mathrm{x}(1000 / 12.2) \mathrm{dm}^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$

Calculate the concentration of sulfuric acid in $\mathrm{g} / \mathrm{dm}^{3}$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g} \\
0.49 \times 98 \mathrm{~g}=48.2 \mathrm{~g} / \mathrm{dm}^{3}
\end{gathered}
$$

Equal amounts of moles or gases occupy the same volume under the same conditions of temperature and pressure. The volume of one mole of any gas at

You can calculate the volume of a gas at room temperature and pressure from its mass and relative formula mass using the equation:

Number of moles = mass
 relative formula mass

Volume of gas at rtp = moles $\times 24$

You can calculate the volumes of gaseous reactants and products from a balanced equation and a given volume of a gaseous reactant or product using the following equation:

Volume of gas at $\mathrm{rtp}=$ number of moles x molar mass volume ($24 \mathrm{dm}^{3}$)

Quantities - CHEMISTRY ONLY

Higher
6 g of a hydrocarbon gas had a volume of 4.8 d^{3}. Calculate its molecular mass.

1 mole $=24 \mathrm{dm}^{3}$, so $4.8 / 24=0.2 \mathrm{~mol}$
$M_{r}=6 / 0.2=30$
if $6 \mathrm{~g}=0.2 \mathrm{~mol}, 1$ mol equals 30 g
volume $H_{2}=1.75 \times 24=42 \mathrm{dm}^{3}$

```
What is the volume of 11.6
g of
butane (C4 H H ) gas at RTP?
M
11.6/58=0.20 mol
volume = 0.20 x 24=4.8
dm}\mp@subsup{}{}{3
```

What mass of magnesium carbonate is needed to make $6 \mathrm{dm}^{3}$ of carbon dioxide?
$\mathrm{MgCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}} \rightarrow \mathrm{MgSO}_{4(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$ $1 \mathrm{~mole}=24 \mathrm{dm}^{3}, 6 \mathrm{dm}^{3}$ is equal to $6 / 24=0.25 \mathrm{~mol}$ of gas
From the equation, 1 mole of MgCO_{3} produces 1 mole of CO_{2}, which occupies a volume of $24 \mathrm{dm}^{3}$. so 0.25 moles of MgCO_{3} is needed to make 0.25 mol of CO_{2}
$\mathrm{M}_{\mathrm{r}}: \mathrm{MgCO}_{3}=24+12+(3 \times 16)=84$,
Mass of $\mathrm{MgCO}_{3}=0.25 \times 84=21 \mathrm{~g}$

QuestionIT!

Quantities

CHEMISTRY ONLY

- Moles of solution and gases (HT)

1. What are the units for concentration?
2. What is the equation for the calculation of concentration from the moles and volume of solution?
3. What can be said about equal amounts of moles of gases and the volume they occupy?
4. What is meant by RTP?
5. What are the values for RTP?
6. What is the concentration, in $\mathrm{g} / \mathrm{dm}^{3}$, of a solution that has 40 g of solute in $2 \mathrm{dm}^{3}$ of solution?
7. Calculate the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of a solution that has 0.75 mol of an acid in $3 \mathrm{dm}^{3}$ of solution.
8. It takes $28.0 \mathrm{~cm}^{3}$ of potassium hydroxide to neutralise $25.00 \mathrm{~cm}^{3}$ of nitric acid at a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.
$\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
9. Calculate the concentration of the potassium hydroxide. What is the volume of 4.5 g of oxygen?
10. Calculate the number of moles of hydrogen that occupy $6 \mathrm{dm}^{3}$ at RTP.

AnswerIT!

Quantities
 CHEMISTRY ONLY

- Moles of solution and gases (HT)

1. What are the units for concentration? $\mathrm{mol} / \mathrm{dm}^{3}\left(\mathrm{~g} / \mathrm{dm}^{3}\right)$
2. What is the equation for the calculation of concentration from the moles and volume of solution?
Concentration $=\frac{\text { Moles }}{\text { Volume }}$
3. What can be said about equal amounts of moles of gases and the volume they occupy?
Equal amounts of moles of gases occupy the same volume under the same conditions of temperature and pressure.
4. What is meant by RTP?

Room temperature and pressure
5. What are the values for RTP?
$20^{\circ} \mathrm{C}$; 1 atmosphere pressure
6. What is the concentration, in $\mathrm{g} / \mathrm{dm}^{3}$, of a solution that has 40 g of solute in $2 \mathrm{dm}^{3}$ of solution?
Concentration $=$ mass \div volume $=40 \mathrm{~g} \div 2 \mathrm{dm}^{3}=20 \mathrm{~g} / \mathrm{dm}^{3}$
7. Calculate the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of a solution that has 0.75 mol of an acid in $3 \mathrm{dm}^{3}$ of solution $0.75 \mathrm{~mol} / 3 \mathrm{dm}^{3}=0.25 \mathrm{~mol} / \mathrm{dm}^{3}$
8. It takes $28.0 \mathrm{~cm}^{3}$ of potassium hydroxide to neutralise $25.00 \mathrm{~cm}^{3}$ of nitric acid at a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

$\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the potassium hydroxide.
Number of moles of nitric acid $=$ concentration \times volume
$=0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(25 \div 1000) \mathrm{dm}^{3}=0.0125 \mathrm{~mol}$
The equation for the reaction shows that 1 mole of potassium hydroxide reacts with 1 mole of nitric acid. So there is 0.0125 mol of KOH in $28 \mathrm{~cm}^{3}$ of solution.
So the concentration of KOH in $\mathrm{mol} / \mathrm{dm}^{3}=$ number of moles \div volume $=0.0125 \mathrm{~mol} \div(28 \div 1000) \mathrm{dm}^{3}=0.45 \mathrm{~mol} / \mathrm{dm}^{3}$
9. What is the volume of 4.5 g of oxygen?
A_{r} : O (16)
$M_{r}: O_{2}=32$
1 mole in $\mathrm{g}=32 \mathrm{~g}$
4.5/32 = 0.14 mol

Volume $\mathrm{O}_{2}=0.14 \times 24=3.38 \mathrm{dm}^{3}$
10. Calculate the number of moles of hydrogen that occupy $6 \mathrm{dm}^{3}$ at RTP.
Number of moles $=6 \div 24=0.25 \mathrm{~mol}$

