A student is experimenting with a lens in an optics lab. The setup she is using at one point in her investigation is as shown below.

State the type of lens which the student is using.

By drawing two (or more) appropriate rays onto the above diagram, determine the location of the image of the object produced by the lens.

Is the image produced real or virtual? Explain your answer.

By measuring the sizes of the object and image using the above graph, show that this lens is producing a magnification of 0.5 .

[2 marks]

Theory suggest that the magnification of a lens can also be determined by using the following equation:

$$
\text { Magnification }=\frac{\text { Distance between lens and image }}{\text { Distance between lens and object }}
$$

Show that a magnification of 0.5 is also calculated using this equation.

Later, the same student investigates a lens with a longer focal length.

Describe a method for measuring the focal length of a lens such as the one shown above.
\qquad
\qquad

By drawing two (or more) appropriate rays onto the above diagram, determine the location of the image of the object produced by this lens.

The image formed can be described as virtual, upright and magnified. Explain the meaning of each of these terms.
\qquad
\qquad

The student later uses a lens which looks like this:

Describe the nature of the image which would be formed by this lens.
\qquad

