A student is experimenting with a lens in an optics lab. The setup she is using at one point in her investigation is as shown below.

State the type of lens which the student is using.
Convex / converging [1].

By drawing two (or more) appropriate rays onto the above diagram, determine the location of the image of the object produced by the lens.

One ray [1], second ray [1], image correctly located and oriented [1].
Is the image produced real or virtual? Explain your answer.
Real [1]. It has been produced by the convergence of actual light rays / could be projected onto a screen [1].

By measuring the sizes of the object and image using the above graph, show that this lens is producing a magnification of 0.5 .

Image height, $\mathrm{h}_{\mathrm{i}}=5 \mathrm{~cm}$, object height, $\mathrm{h}_{\mathrm{o}}=10 \mathrm{~cm}$
Magnification $=h_{i} \div h_{0}=5 \div 10=0.5$

Theory suggest that the magnification of a lens can also be determined by using the following equation:

$$
\text { Magnification }=\frac{\text { Distance between lens and image }}{\text { Distance between lens and object }}
$$

Show that a magnification of 0.5 is also calculated using this equation.
Distance between lens and image $=6 \mathrm{~cm}$
Distance between lens and object $=12 \mathrm{~cm}$
Magnification $=6 \div 12=0.5$

Later, the same student investigates a lens with a longer focal length.

Describe a method for measuring the focal length of a lens such as the one shown above.

Allow parallel rays of light to be incident onto / to strike convex lens [1]. (They will converge to the principal focus on the opposite side of the lens.) The distance between the lens and the principal focus is equal to the focal length [1].

By drawing two (or more) appropriate rays onto the above diagram, determine the location of the image of the object produced by this lens.

One ray [1], second ray [1], image correctly located and oriented [1].
The image formed can be described as virtual, upright and magnified. Explain the meaning of each of these terms.

Virtual: an image formed by light rays which appear to diverge from a point (cannot be projected onto a screen) [1]. Upright: has the same orientation (accept 'the same way up') as the object [1]. Magnified: (appears) larger than the object [1].

The student later uses a lens which looks like this:

Describe the nature of the image which would be formed by this lens.

This is a concave (diverging) lens so the image formed will always be: virtual, upright and diminished.
(All three for 2 marks; one or two for 1 mark.)

