During a performance, an ice skater is travelling with a velocity of $4 \mathrm{~m} / \mathrm{s}$.

She decelerates uniformly to a velocity of $1 \mathrm{~m} / \mathrm{s}$ at $0.5 \mathrm{~m} / \mathrm{s}^{2}$. How far does she travel in this time?

Distance travelled = \qquad metres

Time $=$ \qquad seconds

A bus accelerates uniformly from 0 to $50 \mathrm{~km} / \mathrm{h}$ in 15 seconds. It then maintains this speed for a further 45 seconds.

Show that $50 \mathrm{~km} / \mathrm{h}$ is equivalent to a speed of approximately $13.9 \mathrm{~m} / \mathrm{s}$.

Calculate the acceleration of the bus in its first 15 seconds of motion.

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

[2 marks]

Distance = \qquad m

Distance travelled = \qquad metres

It then travels at its top speed for some time, before decelerating to rest at a rate of $8 \mathrm{~m} / \mathrm{s}^{2}$. If it travelled a distance of 1 km in total, how long did its journey take?

Time taken $=$ \qquad seconds
3
\square

Calculate the average speed of the car for its whole journey.

Average speed = \qquad m / s

