0 1	A chemist was making some aspirin. She calculated that the maximum yield of aspirin that she could make was 800g.							
	The chemist carried out the experiment but only made 500g of aspirin.							
0 1 . 1	Calculate the percentage yield of aspirin for this experiment.	[2 marks]						
	Show clearly how you work out your answer.	[2 marks]						
	Percentage yield of aspirin = %							
0 1 . 2	Suggest one possible reason why the percentage yield was not 100%.	[1 mark]						
0 2	This question is about atom economy.							
0 2 . 1	Which reaction has an atom economy of 100%?	[1 mark]						
	$\Box \qquad C + H_2O \rightarrow CO_2 + 2H_2$							
	□ Cu + 2HCl → CuCl2 + H2							
	$\square \qquad 2Cu + O_2 \rightarrow 2CuO$							
0 2 . 2	Calculate the atom economy for making hydrogen:							
	$CH_4 + H_2O \rightarrow CO + 3H_2$							
	Atom economy =%							

(Total 6 marks)

End of Question See next page for Data Sheet

	_		1	Т		_					1	
0	He helium	20 Neon	Ar argon	8	호	kryptor 36	131 Xe	xenon 54	[222]	radon 86		
7		19 T fluorine 9	35.5 Cl chlorine	08	Ŗ	bromine 35	 271	iodine 53	[210]	At astatine 85		
9			32 Sulfur			**		•]	
5		14 N nitrogen	31 P	75	As	arsenic 33	4 S	antimony 51	209	bi smuth 83		
4		12 C carbon	Silicon	73	Ģe	germanium 32	119 Sn	ë e	207	υ lead 82		
က		11 B boron 5	27 Al	02	Ga	gallium 31	u j 911	indium 49	204	thallium 81		
				99	Zn	zinc 30	112 Cd	cadmium 48	201	Hg mercury 80		
				63.5	ე	copper 29	108 Aq	silver 47	197	Au	[272] Rg roentgenium	
				59	Z	nickel 28	106 Pd	palladium 46	195	Pt platinum 78	[271] DS darmstadtium	3
				69	ය	cobalt 27	103 Rh	rhodium 45	192	IF iridium 77	[268] Mt meitnerium	202
	1 H hydrogen 1			99	Ā	iron 26	101 Ru	ruthenium 44	190	OS osmium 76	[277] HS hassium	<u>s</u>
		ass		55	Ψ	manganese 25	2 <u>]</u> [86]	technetium 43	186	Ke rhenium 75	[264] Bh bohrium	ì
		relative atomic mass atomic symbol	atomic number		ပ်	Ε	% Mo	를		W tungsten 74		חחח
	KEY	relative atomic	t atomic ↑	51	>	vanadium 23	qN 88	niobium 41	181	⊑	[262] Db dubium	6
		- I	nydrogen 1	48	F	titanium 22	91 Zr	zirconium 40	178	<u> </u>	2	<u>‡</u>
				┸		scandium 21		yttrium 39	139	La Ianthanum 57	Ac Ac actinium	٥ٛ
2		9 Be beryllium	24 Mg magnesium	40		calcium 20		strontium 38	137	Ba barium 56	[226] Ra radium	
1		7 Li lithium	Na sodium	39	¥	potassium 19	85 Rb	rubidium 37	133	Cs caesium 55	[223] Fr francium	ò