A communications satellite is in orbit around the Earth, as shown below.

Draw an arrow onto the diagram to indicate the direction in which the centripetal force on the satellite is acting. Label this arrow \mathbf{F}.

Write down the origin of this centripetal force.

Draw a second arrow onto the diagram to indicate the direction of the velocity of the satellite at the point shown. Label this arrow \mathbf{v}.

[1 mark]

Although the speed of the satellite in its current orbit (orbit 1) is constant, its velocity is constantly changing. Explain why.

The speed of the satellite is reduced and it moves to a new orbit. Which of the above orbits will it move to: orbit 2 or orbit 3 ?

6
Explain your previous answer.
\qquad
\qquad

0	2

\square

Some information on the orbit of the eight planets about the Sun is shown in the below table.

Planet	Average distance from Sun (million km)	Time taken to orbit Sun (years)
Mercury	58	0.24
Venus	108	0.62
Earth	150	1
Mars	228	1.88
Jupiter	780	12
Saturn	1430	2980
Uranus	4500	165
Neptune		

Show that the orbital speed of the Earth around the Sun is approximately equal to $30 \mathrm{~km} / \mathrm{s}$.

The asteroid belt is located between Mars and Jupiter.
A particular asteroid takes 5.2 years to orbit the Sun, and travels at a speed of $17.2 \mathrm{~km} / \mathrm{s}$. Calculate its distance from the Sun.

Distance $=$ \qquad km

