

The braking systems of cars and many other vehicles rely on the fact that the pressure exerted by a force can be transmitted through a fluid. The below diagram shows a typical car braking system.

When the brake pedal is pushed, the pressure exerted on the small piston next to it (the master cylinder) is transferred to the large pistons at all four wheels. For clarity, just one of these four pistons is shown above. At each wheel, the action of the large piston causes the calipers (brake pads) to be pushed towards the brake disc. The friction between the calipers and brake disc is what causes the vehicle to slow down.

The driver in the above diagram applies a force of 20 N to the brake pedal. Calculate the pressure which this will exert on the fluid inside the small piston. Include an appropriate unit with your answer.
$\mathrm{p}=\mathrm{F} \div \mathrm{A}=20 \div\left(5 \times 10^{-4}\right)=\underline{\mathbf{4 0 , 0 0 0} \mathbf{P a}}$
(Equivalent to $40,000 \mathrm{~N} / \mathrm{m}^{2}$ or 40 kPa or $40 \mathrm{kN} / \mathrm{m}^{2}$)
Calculate the braking force which is produced at each wheel.
$F=p A=40,000 \times\left(2 \times 10^{-3}\right)=\mathbf{8 0} \mathbf{N}$

A holidaymaker takes a scuba diving class. They are told that the pressure acting on them will double when they dive to a depth of 10 m .

If the (atmospheric) pressure at the surface is 100 kPa , estimate the density of the seawater in which they are diving. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

```
Change in pressure from surface to 10 m depth, \(\mathrm{p}=200-100=100 \mathrm{kPa}\)
\(\mathrm{p}=\mathrm{h} \rho \mathrm{g}\)
\(100,000=10 \times \rho \times 9.8\)
\(100,000=98 \rho\)
\(\rho=100,000 \div 98=1020 \mathrm{~kg} / \mathrm{m}^{3}\) (to nearest whole number)
```


