The electromagnetic spectrum is normally thought of as being made up of seven different types of waves.

Wavelength (m)

Identify types $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the above diagram.
A: \qquad C: \qquad
B: \qquad D: \qquad

State two things which all electromagnetic waves have in common.
\qquad

Some mobile phone signals in the UK operate at a frequency of 800 MHz . Calculate the wavelength which this corresponds to.

The speed of electromagnetic waves in air is roughly $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. ($1 \mathrm{MHz}=1$ million Hz .)

Wavelength = \qquad m

Visible light ranges in wavelength from 400 to 700 nm (nanometres). Calculate the maximum frequency of a visible light wave.
$\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$

Maximum frequency = \qquad Hz

A light ray is directed from air into a glass block which is sitting flush with a mirror, as shown in the below diagram.

Complete the diagram to show how the path of the ray changes after it strikes the top surface of the glass block.
[3 marks]

Explain why the light ray follows the path shown.
\qquad
\qquad
\qquad

A water wave is travelling from shallow water into deep water, as shown in the below wavefront diagram.

Complete the diagram to show how the wavefronts change as they enter and travel through the deep water.

0	4

State the independent and dependent variables in this investigation Independent variable

Dependent variable

There are two values of r for each value of i. Explain why the student decided to repeat the entire experiment once.

\qquad
\qquad
decided to repeat the entire experiment once.
\qquad

> Complete the final column of the above table to calculate the average angle of reflection of each angle of incidence.

A student is using the below experimental setup to investigate the reflection of light from the surface of a plane mirror.

The results which they obtain are as shown in the below table.

Angle of incidence, $\mathbf{i}\left({ }^{\circ}\right)$	Angle of reflection, $\mathrm{r}\left({ }^{\circ}\right)$		
	Measurement 1	Measurement 2	Average
10	10	10	
20	20	22	
30	29	32	
40	39	40	
50	50	50	
60	60	62	
70	70	810	
80	79		

Use the below axes to plot a graph of the results.

[2 marks]
Describe the trend shown by the above graph.
\qquad
\qquad

The light which strikes a smooth reflective surface (such as the plane mirror which was used in this investigation) is said to undergo a process called specular reflection.

Describe and explain how the results would have been different had the light from the ray box been directed onto a rough reflective surface.

