The below graph shows how the activity of a sample of uranium-238 changes with time.

Uranium-238 has an exceptionally long half-life.
Explain what is meant by the half-life of a substance.
The time taken for the activity of / count rate from / mass of a / number of radioactive nuclei present in a substance [1] to fall to half of its initial value [1].

Using information from the graph, determine the half-life of uranium-238.
E.g. at $t=0, A=200 \mathrm{MBq}$

Half of initial activity $=200 \div 2=100 \mathrm{MBq}$
(From graph) time at which activity $=100 \mathrm{MBq}$ is $\mathrm{t}=4.5$ billion years
Half-life $=\underline{4.5 \text { billion years }}$

Techentium-99m is an important isotope in medical imaging. The half-life of technetium-99m is 6 hours.

A fresh sample of technetium-99m is prepared in a hospital. What fraction of this sample will have decayed after 18 hours?

18 hours $=3$ half-lives $(18 \div 6=3)$
Fraction remaining after 3 half-lives $=1 / 2 \times 1 / 2 \times 1 / 2=1 / 8$
Therefore, fraction which has decayed $=1-1 / 8=7 / 8$
Answer = 7/8

A different sample of technetium of mass 128 mg is prepared on March $3^{\text {rd }}$ at midday. How much of this technetium will be remaining on March $5^{\text {th }}$ at the same time?

2 days $=48$ hours
48 hours $=8$ half-lives $(48 \div 6=8)$
Mass remaining after 8 half-lives:
$\mathrm{m}=128 \div 2 \div 2\left(\right.$ or $\left.128 \div 2^{8}\right)=\mathbf{0 . 5} \mathbf{~ m g}$

To estimate the age of rocks, scientists sometimes compare the amount of potassium-40 the amount of argon-40 they contain. They assume that, when the rock was just formed, it contained no argon (argon is a gas which could escape from molten rock). Potassium-40 has a half-life of 1.3×10^{9} years, and it decays to form argon-40, which is stable.

The ratio of potassium-40 to argon-40 in a particular rock is 1:1. Estimate the age of the rock.

Initially, the rock contained only potassium-40. After 1 half-life, half of the potassium-40 present will have decayed to form argon-40 (so there will be an equal number of both types of nuclei present within the rock, and their ratio will be 1:1).

$$
\text { Age }=\underline{1.3 \times 10^{9}} \text { years }
$$

In a different rock, the ratio of potassium-40 to argon-40 is 1:7.
Show that it is approximately 3.9 billion $\left(3.9 \times 10^{9}\right)$ years old.

After 1 half-life, ratio $=1: 1$
After 2 half-lives, ratio $=1: 3$
After 3 half-lives, ratio $=1: 7$
Therefore, age of rock:
$=3 \times\left(1.3 \times 10^{9}\right)$ years
$=3.9 \times 10^{9}$ years

TOP TIP: this is probably the most difficult type of question you could be asked on this topic. If you don't like using ratios, start off with dummy figures.

If there was 80 g of potassium to start with, after 3 half-lives, there would be 10 g remaining, and 70 g would have been converted to argon, so the ratio is 10:70 (which is the same as 1:7).

