The below graph shows how the activity of a sample of uranium-238 changes with time.

The initial activity of this sample is $200 \mathrm{MBq}\left(1 \mathrm{MBq}=10^{6} \mathrm{~Bq}\right)$. What is meant by the activity of a source?
\qquad
\qquad

Uranium-238 has an exceptionally long half-life. Explain what is meant by the half-life of a substance.
\qquad
\qquad

Using information from the graph, determine the half-life of uranium-238.

Half-life = \qquad billion years

Age = \qquad years
Techentium-99m is an important isotope in medical imaging. The half-life of technetium-99m is 6 hours.

A fresh sample of technetium-99m is prepared in a hospital. What fraction of this sample will have decayed after 18 hours?

Answer =

A different sample of technetium of mass 128 mg is prepared on March $3^{\text {rd }}$ at midday.

How much of this technetium will be remaining on March $5^{\text {th }}$ at the same time?

Mass remaining $=\ldots \mathrm{mg}$
[3 marks]

To estimate the age of rocks, scientists sometimes compare the amount of potassium-40 the amount of argon-40 they contain.

They assume that, when the rock was just formed, it contained no argon (argon is a gas which could escape from molten rock).

Potassium-40 has a half-life of 1.3×10^{9} years, and it decays to form argon-40, which is stable.

The ratio of potassium-40 to argon-40 in a particular rock is 1:1.
Estimate the age of the rock.

Age

In a different rock, the ratio of potassium-40 to argon-40 is 1:7.
Show that it is approximately 3.9 billion $\left(3.9 \times 10^{9}\right)$ years old.

