

A student investigated simple cells using the apparatus shown in the figure below.

- If metal 2 is more reactive than metal 1 then the voltage measured is positive.
- If metal 1 is more reactive than metal 2 then the voltage measured is negative.
- The bigger the difference in reactivity of the two metals, the larger the voltage produced.

The student's results are shown in the table below.

Metal 2 Metal 1	Chromium	Copper	Iron	Tin	Zinc
Chromium	0.0 V				
Copper	1.2 V	0.0 V			
Iron	0.5 V	not measured	0.0 V		
Tin	0.8 V	-0.4 V	0.3 V	0.0 V	
Zinc	0.2 V	-1.0 V	-0.3 V	-0.6 V	0.0 V

The ionic equation for the reaction occuring at the zinc electrode in the simple cell made using copper and zinc electrodes is:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

Zinc is oxidised in this reaction.

Give a reason why this is oxidation.

(zinc has) lost electron(s)

accept loss of electrons

.....

[1 mark]

	Look at the table above.				
0 1 . 2	Which one of the metals used was the least reactive? [2 r				
	Give a reason for your answer.				
	Metal copper is the least reactive				
	Reason <u>because it gave the most negative voltage when it was metal 2</u> or				
	it gave the biggest voltage with chromium or				
	it gave the most positive voltage when it was metal 1				
0 1 . 3	Predict the voltage that would be obtained for a simple cell that has iron as metal 1 and copper as metal 2 .				
	[3 m	arks]			
	Explain your answer.				
	-0.7 V	1]			
	The voltage with chromium and copper is 1.2	1]			
	accept use of other cell pairings such as tin with copper and tin with iron				
	The voltage with chromium and iron is 0.5 and copper is less reactive (than i [1]	<u>ron)</u>			

(Total 6 marks)

End