0	1

0	1

1
I

Ammeter reading $=$ \qquad A

Calculate the potential difference (p.d.) across one of the 6Ω resistors.

Potential difference $=$ \qquad v
[2 marks]

The resistors are then connected in parallel.
The new reading on the ammeter is now 3 A .

Calculate the current flowing through each resistor.
Current $=$ \qquad A

Equivalent resistance = \qquad Ω

[2 marks]

Explain why placing the resistors in parallel in this circuit had the effect of increasing the circuit current.
[2 marks]

An old set of decorative lights is made from nine identical lamps which are connected in series, as shown below.

Under normal operating conditions, the lamps draw a current of 2.5 A from a 230 V mains electricity supply.

Calculate the resistance of each of the lamps.

Resistance of each lamp = \qquad Ω
What is the equivalent resistance of the parallel 6Ω resistors? In other words, if they were replaced by a single resistor which maintained the current at 3 A , what would its resistance be?

Most modern decorative lamps are wired in parallel. Write down one advantage of connecting such lamps in parallel rather than in series.

