Three friends are taking part in a charity tug-o-war competition.

In a round in which the competitors start from rest, George and Bernard are applying forces of 640 and 510 N , respectively. Calculate the force which Rashida must apply for them to remain at rest.

Force = \qquad N

[2 marks]

Thanks to a sudden burst of energy, Rashida then pulls with a force of 550 N. Calculate the magnitude and direction of the resultant force exerted on the centre of the rope.

Force $=$ \qquad N

Direction $=$ \qquad
[2 marks]

A horse of mass 400 kg is accelerating forwards at a rate of $0.5 \mathrm{~m} / \mathrm{s}^{2}$. The forces which are acting on the horse are as shown in the below diagram.

Which of the below mathematical statements is correct? Tick one box.

Friction + air resistance < 2 kN
Friction + air resistance $=2 \mathrm{kN}$
Friction + air resistance > 2 kN

Explain your previous answer.

[2 marks]

Calculate the magnitude of the normal reaction force which is acting on the horse. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

Normal reaction force = \qquad N
[2 marks]
n a game of tennis, a ball is hit horizontally at a speed of $40 \mathrm{~m} / \mathrm{s}$.

After 0.5 seconds, its horizontal velocity has not changed, but it has developed a downwards component of velocity of approximately $5 \mathrm{~m} / \mathrm{s}$.

By drawing a suitable scale diagram, determine the magnitude and direction of the tennis ball after 0.5 seconds.

Magnitude = \qquad m/s

Direction $=$ \qquad
[6 marks]

