0 1	Melting, evaporation, freezing and condensation are four examples of physical changes .
0 1 . 1	Label each of the arrows in the below diagram with the correct physical change which occurs as a substance changes between the solid, liquid and gas states.
	freezing condensation SOLID LIQUID GAS melting evaporation [4 marks]
0 1 . 2	Explain what is meant by a physical change . A physical change is one in which no new substances are formed [1]. Physical changes are easily reversible [1]. [2 marks]
0 1 . 3	Under the right conditions, a substance can change directly from a solid to a gas. State the name of this process. Sublimation. [1 mark]

0 2 . 1	State the meaning of the term internal energy .
	The internal energy of a system is the total kinetic and potential energy
	[1] of all the particles it contains [1]. [2 marks]
0 2 . 2	As the temperature of a substance increases, what happens to its internal energy? Tick one box.
	It increases
	It decreases
	It stays the same [1 mark]
0 2 . 3	An ice cube is placed into a glass of water which is at room temperature. After 15 minutes, the ice has melted completely.
	Using the particle model, explain fully what happens to the ice as it melts.

- The particles in a solid are packed tightly, and vibrate about fixed positions [1]
- When the ice cube (which is at a lower temperature) is placed into the
 water (which is at a higher temperature), there is a net flow of heat
 energy from the water to the ice [1]
- This increases the internal energy stored by/temperature of the ice
- As its temperature increases, the particles within the ice vibrate more rapidly (about their fixed positions) [1]
- When these particles have enough energy, the bonds holding them together will be broken, and they will be able to move freely/flow around one another [1]

[4 marks]