A factory produces steel components for use by a number of different companies. The density of the steel used by the factory is $8000 \mathrm{~kg} / \mathrm{m}^{3}$.

A particular steel cube produced by the factory has a side length of 5 cm .

Calculate the mass of one of these cubes. Write your answer in kilograms.
$V=0.05 \times 0.05 \times 0.05=0.000125 \mathrm{~m}^{3}\left(\right.$ or $\left.1.25 \times 10^{-4} \mathrm{~m}^{3}\right)$
$\mathrm{m}=\rho \times \mathrm{V}=8000 \times 1.25 \times 10^{-4}=1 \mathrm{~kg}$

The factory also produces a 10 g steel ball bearing.

Calculate the radius of this ball bearing. Include the unit with your answer.

Remember that the equation for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.
$\mathrm{m}=0.01 \mathrm{~kg}$
$V=m \div \rho=0.01 \div 8000=1.25 \times 10^{-6} \mathrm{~m}^{3}$
$1.25 \times 10^{-6}=\frac{4}{3} \times \pi \times r^{3}$
$r^{3}=2.98 \times 10^{-7}$
$r=\underline{6.68 \times 10^{-3} \mathrm{~m}}$
(or 0.69 cm or 6.9 mm)

A student uses below setup to measure the density of water.

The steps which they take in their investigation are as follows:

- Use measuring cylinder to measure out $200 \mathrm{~cm}^{3}$ of water
- Pour water into beaker
- Turn on and zero electronic balance
- Place beaker containing water onto balance
- Measure mass

Identify the mistake in the method used by the student.
They measured the mass of the water and the beaker, and not just the water on its own [1].

What is the name given to this type of error?
Systematic error.

The actual density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$. Using the incorrect method above, will the student calculate a value for the density of water which is less than or greater than this value? Explain your answer.

Greater [1]. The value which the student used for the mass of the water was higher than its actual value (as it would have included the mass of the beaker too) [1]. Therefore, as $\rho=\mathrm{m} \div \mathrm{V}$, the density value they calculated would have been higher than the true value [1].

