A man is using a lever to lift a heavy rock, as shown below.

The mass of the rock is 70 kg . Calculate its weight. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.
$W=m g=70 \times 9.8=\underline{686} \mathbf{N}$

Determine the minimum downwards force (F) which the man must apply to the end of the lever to lift the rock.

Theory leading to below equation: in equilibrium, ACW moment exerted by rock = CW moment exerted by man about pivot. If the man applies a force greater than the equilibrium force (F), there will be a net (resultant) CW moment about the pivot and the rock will be pushed upwards.

```
F x 1.25=686 < 0.6
1.25 F = 411.6
F=411.6\div1.25=329 N (to nearest N)
```

The below diagram shows two of the cogs which are used inside an antique watch. Information on each cog is also displayed below.

Cog number	Number of teeth	Radius (mm)
1	10	5.0
2	15	7.5

A force of 0.1 N is applied to $\operatorname{cog} 1$. Calculate the moment of this force about the centre of the cog. Include an appropriate unit with your answer.

$$
\begin{aligned}
& \text { Either M = F d }=0.1 \times 0.005=\underline{\mathbf{0 . 0 0 0 5} \mathbf{~ N ~ m}} \text { (newton-meters) } \\
& \text { or M }=\mathrm{F} \mathrm{~d}=0.1 \times 5=\underline{\mathbf{0 . 5} \mathbf{~ N ~ m m}} \text { (newton-millimeters) }
\end{aligned}
$$

Show that the moment (turning effect) produced about $\operatorname{cog} 2$ as a result of this force is 50% larger than that produced about $\operatorname{cog} 1$.
(By Newton's third law) force on $\operatorname{cog} 2=$ force on $\operatorname{cog} 1=0.1 \mathrm{~N}$. Moment about $\operatorname{cog} 2, \mathrm{M}=\mathrm{Fd}=0.1 \times 0.0075=0.00075 \mathrm{Nm}(0.75 \mathrm{Nmm})$ which is 50% greater than previous answer of $0.0005 \mathrm{Nm}(0.5 \mathrm{Nmm})$.

A crane is being used to lift a 10 kN load on a building site.

State the Principle of Moments.

For an object to be in (rotational) equilibrium [1], the total clockwise moment (about any pivot) [1] must be equal to the total anticlockwise moment (about the same pivot) [1].

Calculate the mass of counterbalance required for the above crane to be in equilibrium. You may neglect the weight of the crane in your calculation, and should take the value of g to be $9.8 \mathrm{~N} / \mathrm{kg}$.

Taking moments about base of crane:
(Total) ACW moment $=$ (total) CW moment
$W \times 12=10,000 \times 18(W=$ weight of counterbalance $)$
$W=15,000 \mathrm{~N}$
So mass, $\mathrm{m}=\mathrm{W} \div \mathrm{g}=15,000 \div 9.8=\mathbf{1 5 3 1} \mathrm{kg}$ (to nearest kilogram)
If the load is moved much closer to the base of the crane, the counterbalance might need to be adjusted. Suggest a reason why.

If the load is moved closer to the base of the crane, the clockwise moment it exerts (about the base of the crane) will decrease ($\mathrm{M}=\mathrm{F}$ d) [1]. Unless the counterbalance is adjusted (either decreased in mass or moved closer to the base) there will then be a net (resultant) anticlockwise moment (about the base of the crane) which may damage the crane or cause it to topple over [1].

