

Weight = \qquad N
[2 marks]

Determine the minimum downwards force (F) which the man must apply to the end of the lever to lift the rock.

F = \qquad N
[2 marks]

The below diagram shows two of the cogs which are used inside an antique watch. Information on each cog is also displayed below.

Cog number	Number of teeth	Radius (mm)
1	10	5.0
2	15	7.5

A force of 0.1 N is applied to $\operatorname{cog} 1$. Calculate the moment of this force about the centre of the cog. Include an appropriate unit with your answer.

Moment = \qquad Unit \qquad

Show that the moment (turning effect) produced about $\operatorname{cog} 2$ as a result of this force is 50% larger than that produced about $\operatorname{cog} 1$.

[3 marks]

A crane is being used to lift a 10 kN load on a building site.

State the Principle of Moments.

Calculate the mass of counterbalance required for the above crane to be in equilibrium. You may neglect the weight of the crane in your calculation, and should take the value of g to be $9.8 \mathrm{~N} / \mathrm{kg}$.

```
Mass = _ kg
```

If the load is moved much closer to the base of the crane, the counterbalance might need to be adjusted. Suggest a reason why.

