| 0 | 1 |
| :--- | :--- |\quad| 1 |
| :--- | State the equation for the momentum of an object.

A speedboat of mass 2000 kg has a momentum of $52,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. Calculate its velocity.

Velocity $=$ \qquad m / s

You read in a textbook that the electron in the hydrogen atom orbits the nucleus at approximately 2,200 kilometres per second, and that the mass of the electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Calculate the momentum of one of these electrons.

Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$

An ice skater is balancing at rest on an ice rink. She then throws a tennis ball forwards and starts to move backwards, as shown below.

State the Principle of Conservation of Momentum.

Explain why the ice skater moves as shown in the above diagram.

A car of mass 1500 kg is about to crash into the back of a lorry of mass 6000 kg , as shown below.

Show that the combined momentum of both vehicles before the collision is $90,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.

After the collision the car and lorry stick together and travel with a common velocity of $10 \mathrm{~m} / \mathrm{s}$. Calculate their combined momentum after the collision.

Combined momentum after collision = $\mathrm{kg} \mathrm{m} / \mathrm{s}$
[3 marks]

Compare and comment on the previous two answers.
\qquad
\qquad
\qquad
[3 marks]

