Eric the Astronaut is stranded in deep space, where the local gravitational field strength if $0 \mathrm{~N} / \mathrm{kg}$.

State Newton's first law, and explain what it can tell us about the motion of Eric in deep space.
\qquad

Fortunately, Eric is rescued by a passing spacecraft. Before returning to Earth, he stops to complete his mission to make a few repairs to a small satellite which is orbiting the Earth at a constant speed, as shown below.

Derek hears about this exciting mission back down on Earth, and says that Newton's first law still applies to the motion of Eric. Is he correct? Explain your answer.

State the meaning of the term F in the above equation.

[1 mark]

State the meaning of Newton's second law in words.
[2 marks]

Pádraig is trying to push-start his car by applying a force of 400 N to it, as shown below.

If the force of friction acting between each tyre and the road is 90 N and the mass of the car is 1600 kg , calculate its acceleration. You may neglect the effects of air resistance in answering this question.

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

The road surface on which the car is sitting is perfectly flat. Calculate the reaction force exerted on the car at each wheel. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

Answer = \qquad N

Explain what is meant by the inertial mass of an object.
\qquad
\qquad

Explain why beaker A moved further than beaker B.
\qquad
\qquad

Newton's third law is often misunderstood. It explains many important things, such as how we use friction to enable us to walk.

State Newton's third law.
\qquad
\qquad

Explain, making reference to Newton's third law, how the force of friction allows us to walk across a surface.

Show that the force of tension in the string is approximately equal to 3 N when a mass of 300 g is attached to its end. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.
The light gates are set up so as to measure the average velocity at which the trolley is moving as it passes through them.

On a given run of the trolley, with a resultant force of 3 N still acting on it, the following results are obtained:

> Velocity in light gate $1=0.20 \mathrm{~m} / \mathrm{s}$
> Velocity in light gate $2=0.72 \mathrm{~m} / \mathrm{s}$

The flag which is attached to the top of the trolley is 10 cm long. Calculate how long the trolley took to pass through light gate 1.

Time $=$ \qquad seconds

Use the correct equation from the Physics equation sheet to calculate the acceleration of the trolley on this run.

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

Hence calculate the mass of the trolley.

Mass = \qquad kg

