

The below diagram shows the arrangement of subatomic particles within a helium atom.

Complete the following table which displays information on each of these subatomic particles.

Particle	Mass (relative)	Charge (relative)
Proton	1	+1
Neutron	1	0
Electron	$\frac{1}{1800}$	-1

The nucleus of this helium atom can be represented in the form:

${ }_{z}^{a} \mathrm{He}$

Determine the values of the constants A and Z .
$A=4$
Remember that the mass number (A) tells us the total number of protons and neutrons in the nucleus of an atom.
$Z=2$

Under certain conditions, helium atoms can become ionised.
Explain what is meant by an ion.
An ion is formed when an atom loses or gains electrons [1], giving it a (net) positive or negative charge [1].

When heated to a high temperature, a particular helium atom develops a charge of +1 . What must have happened to the atom to allow it to develop this charge?

It must have lost one electron [1].

The initial overall charge of the (neutral) helium atom was $\mathbf{+ 2}$ (from the protons) - $\mathbf{2}$ (from the electrons) $=\mathbf{0}$. To have an overall charge of +1 , it must have lost one electron: $\mathbf{+ 2 - 1 = + 1}$

State the (approximate) radius of an atom.

Radius $=10^{-10} \mathrm{~m}$
A scientist makes the following statement:

Of all the isotopes of carbon, carbon-12 is the most stable.

Explain the meaning of the term isotope.

Isotopes are atoms which have the same number of protons as one another (in other words are of the same element) [1] but different numbers of neutrons [1].

Uranium-235 is used in the generation of electricity in nuclear power stations. A uranium- 235 nucleus may be represented using the following notation:

235
92

Determine the number of protons and neutrons in a uranium- 235 nucleus.

Number of protons $=92$
Number of neutrons $=143$

[1 mark]

Uranium-238 is also present within the reactors of nuclear power stations. What is the difference between uranium-235 and uranium-238?

A uranium-238 nucleus has three more neutrons than a uranium-235 nucleus [1].

