Distance vs Time Graphs

time

*The slope of a distance time graph gives the velocity of the moving object

Speed and velocity in in m / s

Frictional Force:

 Friction slows thing down, think of it as grip. Sometimes it is useful and sometimes it is a nuisance. It can change up to a maximum eg when pulling something across the table, but it doesn't disappear when you pull something hard enough to beat it.Newtons 2nd law of Motion: an object with unbalanced forces acting on it will accelerate in the direction of the resultant force

P2a Forces and attractive force which acts between any two masses. On earth gravity or Gravitational field strength $10 \mathrm{~N} / \mathrm{kg}$ and acceleration due to gravity $10 \mathrm{~m} / \mathrm{s}^{2}$ always have the same value. Their Eifects

Newtons $1^{\text {st }}$ law of Motion: an object with balanced forces acting on it will stay still if already still. But if it is moving will stay moving at a constant speed in a straight line

Drag: This is friction from

 fliuds (liquid or gas), if the gas is air it is sometimes called air resistance, It depends on speed and surface areaTerminal Velocity: This is the constant speed reached when drag = weight. If you change your shape when falling you can change your terminal velocity. (open a parachute)

3. deceleration

Weight

4. Lower Terminal Velocity

Velocity vs Time Graphs
 Stopped

velocity

Acceleration

*Area under vel time ${ }^{\text {time }}$ graphs gives the distance travelled
*The slope gives the acceleration

1 kg from it is measured in
Acceleration in $\mathrm{m} / \mathrm{s}^{2}$

Collisions: BEFORE

Explosions:

Before Explosion

Before Explosion

Stopping distance
Total stopping distance $=$ Thinking distance + Braking distance

Momentum: is property of moving objects which is calculated momentum $=$ mass \times velocity . The unit of momentum is $\mathrm{kgm} / \mathrm{s}$

Conservation of Momentum: the total momentum before a collision or explosion is the same as the total momentum after a collision or explosion. So long as no other forces are acting. mass $A \times$ velocity $A=$ Mass $B \times$ velocity $B \quad$ Power \times time

Car safety: The force on a passenger will be large if there is a large change in momentum in a short time. The key to safety is to extend the time of impact to reduce the force. This is done by: seat belts stretch a little, crumple zones at the front and rear, air bags to cushion the impact.

Gravitational Potential energy: When energy is transferred to an object and it gains height, we say we have done work against gravity. It has gained gravitational potential energy. Measured in Joules (J). Work $=$ force x distance moved in the direction of the force Ep $=$ weight x height

Braking a car: The kinetic energy, Ek is transferred to the brakes, we say the brakes have done work Ek $=\frac{1}{2}$ mass \times velocity $^{2}=$ braking force \times stopping distance

Power: is the rate of transfer of energy. Measured in Watts (W)

Work done: When energy is transferred we say we have done work. Work is measured in Joules (J)
Work $=$ force \times distance moved in the direction of the force

