

Describe the energy transfer that occurs as Brian stretches the bow.

By using a slow-motion video system, Daniela measures the speed of the arrow as it strikes the target to be approximately $18 \mathrm{~m} / \mathrm{s}$.

Calculate the decrease in the kinetic energy of the arrow as it travelled between Brian and the target.

Decrease in kinetic energy = \qquad J

Explain why the speed at which the arrow struck the target was lower than the speed at which it left the bow.
\qquad
\qquad

An empty rollercoaster car of mass 200 kg is travelling horizontally at a speed of $5 \mathrm{~m} / \mathrm{s}$ as it approaches a downwards section in the track, as shown below

Calculate the initial kinetic energy of the car.

Kinetic energy = \qquad J

Calculate the amount of gravitational potential energy lost by the car as it completes the downwards section of track. Take $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

Loss in gravitational potential energy $=$ \qquad J

Hence, assuming the rollercoaster car to be a closed system, calculate its speed at the bottom of the hill.

Speed at bottom of hill $=$ \qquad m / s

