$A Q A B$

Please write clearly in block capitals.

Centre number \square Candidate number \square

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier

Biology Paper 2F

Friday 7 June 2019

Afternoon
Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

0	1	$C o n d i t i o n s ~ i n s i d e ~ t h e ~ h u m a n ~ b o d y ~ a r e ~ c o n t r o l l e d . ~$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$ What is the control of conditions inside the body called?

Tick (\checkmark) one box.

Excretion

Fertilisation

Homeostasis

Osmosis \square

$\mathbf{0}$	$\mathbf{1} .2$	$\mathbf{2}$ What are the two ways information is sent to control body conditions?

Tick (\checkmark) two boxes.

By antigens

By hormones

By muscles

By nerve impulses

By red blood cells

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ One condition in the body that needs to be controlled is the level of water. |
| :--- | :--- | :--- | :--- |

Give one other condition in the human body that needs to be controlled.
\qquad
\qquad

Figure 1 shows the volumes of water taken in and lost by one person.
The volume for water taken in on a hot day has not been plotted on the bar graph.
Figure 1

| 0 | $\mathbf{1}$ | .4 |
| :--- | :--- | :--- | The person lost $1400 \mathrm{~cm}^{3}$ of water on the cold day.

How much extra water did they lose on the hot day?
\qquad
\qquad
\qquad
\qquad
Extra volume of water lost $=$ \qquad cm^{3}
Key
Cold dayHot day
olume in cm^{3}

Water lost

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{5}$ Explain why the volume of water lost on a hot day is higher than on a cold day. c

[2 marks]
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{1} .6$

His total intake of water for that day was $3000 \mathrm{~cm}^{3}$
Calculate the percentage of the boy's total intake that the $750 \mathrm{~cm}^{3}$ represents.
[2 marks]
\qquad
\qquad
\qquad
\qquad
Percentage $=$ \qquad \%

$\mathbf{0}$	$\mathbf{2}$ Some students estimated the population of daisy plants in a field.

This is the method used.

1. Place a quadrat randomly on the field.
2. Count and record the number of daisy plants in the quadrat.
3. Repeat steps 1 and 2 another four times.

$\mathbf{0}$	$\mathbf{2} .1$	$\mathbf{1}$

$\mathbf{0}$	$\mathbf{2} .2$ Describe the piece of equipment called a quadrat.

\qquad
\qquad

Table 1 shows the results.
Table 1

Quadrat number	Number of daisy plants
1	8
2	11
3	4
4	6
5	16
Mean	\mathbf{X}

\qquad
\qquad
$X=$ \qquad daisy plants

$\mathbf{0}$	$\mathbf{2} .4$	$\mathbf{4}$

Calculate the area of the field.
\qquad
Area $=$ m^{2}

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ The quadrat used by the students had an area of $1.0 \mathrm{~m}^{2}$

Estimate the population of daisy plants in the field.
Use your answers to Question 02.3 and Question 02.4
[2 marks]
\qquad
\qquad
\qquad
\qquad
Estimated population = daisy plants

| $\mathbf{0}$ | $\mathbf{2} .6$ More daisy plants grew in some parts of the field compared to other areas of the field. |
| :--- | :--- | :--- | :--- | Give two biotic factors that may affect where daisy plants grow in the field.

1
2 \qquad
\qquad
 Explain why smaller daisy plants grew near the building.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	Animals have adaptations to survive in their environment.		Do not wite outside the box
$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$	Draw one line from each animal adaptation to the type of adaptation it is.	
[2 marks]				

Animal adaptation

Type of adaptation

\qquad

Functional

Plants also have adaptations.
Orchid plants have adaptations which make them one of the most successful plant groups.

Orchids rely on insects for pollination.
Figure 2 shows an orchid.
Figure 2

0	$\mathbf{3} .2$	$\mathbf{2}$ Which two features help orchids survive?

Tick (\checkmark) two boxes.

Brightly coloured flowers

Large quantities of pollen

No scent \square
Oval shaped leaves \square

Small leaves

0	3	4	Some species of orchid may become extinct because of deforestation.

Give one reason why tropical rainforests are being cut down.
\qquad

0	3	5	Give one factor that might cause a species of orchid to become extinct.

Do not refer to deforestation in your answer.
\qquad

Scientists have analysed the entire genetic material of one species of orchid.

| 0 | 3 | 6 |
| :--- | :--- | :--- | What chemical is the genetic material made from?

\qquad

| 0 | 3 | 7 |
| :--- | :--- | :--- | What is the name for the entire genetic material of an organism?

| 0 | 4 | A cat breeder noticed that four kittens from one Siamese cat mother had a new blue |
| :--- | :--- | :--- | colour at the tip of their tails.

| 0 | 4. | 1 |
| :--- | :--- | :--- | What has caused the new colour to appear?

Tick (\checkmark) one box.

Fertilisation

Mitosis

Mutation

| 0 | 4 | 2 |
| :--- | :--- | :--- | The cat breeder wants to use selective breeding so that all new kittens have blue tail tips.

Describe the process of selective breeding the cat breeder could use.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lll}0 & \mathbf{4} & .3\end{array}$ Suggest one reason why the cat breeder wants to have all new kittens with the blue tail tips.
\qquad
\qquad

0	$\mathbf{4}$.4	Siamese cats can suffer from heart defects.

Why might there be more Siamese cats with heart defects amongst the kittens with blue tail tips?

Tick (\checkmark) one box.

They are clones

They are formed by mitosis \square
They are formed by sexual reproduction

They are produced by inbreeding \square

With each pregnancy, the cat breeder expected that:

- 50% of the kittens would be male
- 50% of the kittens would be female.

The sex chromosomes in cats are inherited in the same way as in humans.
The sex chromosomes are X and Y .

0	4	5

Male cat
Female cat \qquad

| 0 | 4 | 6 |
| :--- | :--- | :--- | Complete the Punnett square in Figure 3 to show why.

Figure 3
Female cat

0	$\mathbf{4}$	$\mathbf{7}$	In the first pregnancy there was one male kitten and three female kittens.

Give the reason why there were not two kittens of each sex.
\qquad
\qquad

0	5	Figure 4 shows a food chain in a garden.

Figure 4

0	5	$\mathbf{1}$ Which term describes the spider in this food chain?

Tick (\checkmark) one box.

Primary consumer

Producer

Secondary consumer

Tertiary consumer

| $\mathbf{0}$ | $\mathbf{5} .2$ |
| :--- | :--- | $\mathbf{2}$ Many of the spiders in the garden died.

What is likely to happen to the number of blackflies in the garden?
Tick (\checkmark) one box.

Decrease

Increase

Stay the same

0	5	3	$G i v e$

\qquad
\qquad

Table 2 shows the estimated biomass of organisms in the garden.
Table 2

Organism	Biomass in g
Bean plants	225
Blackflies	115
Spiders	65
Blackbirds	10

| 0 | 5 | 4 |
| :--- | :--- | :--- | What conclusion can be made about biomass in food chains?

0	5	5

You should:

- label the y-axis
- plot the data from Table 2.

Figure 5

0	5	6

\qquad
\qquad
\qquad
\qquad

0	6
Some students investigated the effect of drinking caffeine on reaction time.	

They used a drink containing 32.25 mg of caffeine per $100 \mathrm{~cm}^{3}$
This is the method used.

1. Divide the students into four groups, A, B, C and D.
2. Measure and record the reaction time of each student using the ruler-drop test.
3. Students in:

- group A drink $200 \mathrm{~cm}^{3}$ of water
- group B drink $200 \mathrm{~cm}^{3}$ of the caffeine drink
- group C drink $400 \mathrm{~cm}^{3}$ of the caffeine drink
- group D drink $600 \mathrm{~cm}^{3}$ of the caffeine drink.

4. Repeat step 2 after 15 minutes.

0	6	1	Describe how to do the ruler-drop test.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

Table 3

Group	Mass of caffeine in $\mathbf{~ m g}$
A	0
B	64.5
C	129.0
D	\mathbf{X}

Calculate value \mathbf{X}.
\qquad
\qquad
X = mg

| $\mathbf{0}$ | $\mathbf{6} .3$ Why did group \mathbf{A} drink water instead of the caffeine drink? |
| :--- | :--- | :--- | :--- |

Table 4 was used to convert the results of the ruler-drop test into reaction times.
Table 4

Distance in cm	Reaction time in s
2	0.064
4	0.090
6	0.111
8	0.128
10	0.143
12	0.156
14	0.169
16	0.181
18	0.192
20	0.202
22	0.212
24	0.221
26	0.230

Distance in cm	Reaction time in s
28	0.239
30	0.247
32	0.256
34	0.263
36	0.271
38	0.278
40	0.286
42	0.293
44	0.300
46	0.306
48	0.313
50	0.319
52	0.326

0	6	4	Estimate the reaction time for a student who recorded a distance of 23 cm

\qquad
\qquad
Reaction time $=$ \qquad s

Students calculated the decrease in their reaction time after the drink compared with before the drink.

Figure 6 shows the results for each student.
Figure 6

Group A Group B Group C Group D

0	6	5
5		

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$.6	For three students the decrease in reaction time was negative.

Give the reason why the value was negative.
\qquad
\qquad

| 0 | 6 | .7 |
| :--- | :--- | :--- | What is the range of results for group C?

\qquad

0	6	8	Suggest two variables that should have been controlled in this investigation.

1
\qquad
2
\qquad

0	6.	9

\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{7}$ | There has been a rapid increase in the percentage of carbon dioxide in the |
| :--- | :--- | :--- | atmosphere since 1960 .

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ Carbon dioxide is a greenhouse gas that contributes to global warming.

Name one other greenhouse gas.
\qquad

0	$\mathbf{7}$.	$\mathbf{2}$ Global warming causes climate change.

Give two effects of climate change.

1
\qquad

2 \qquad
\qquad

0	$\mathbf{7}$	$\mathbf{3}$	Plants take in carbon dioxide from the atmosphere.

Figure 7 shows part of the carbon cycle.
Figure 7

Describe how carbon from the atmosphere is cycled through living organisms.
[6 marks]
\qquad
There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

