Late for an appointment, Gillian is running up a set of eight steps. As shown in the below diagram, each of the steps is 15 cm high.

Gillian has a mass of 60 kg . Calculate the increase in her gravitational potential energy store between the bottom and the top of the set of steps. Take g = 9.8 N/kg

Total change in height, $\mathrm{h}=8 \times 0.15=1.2 \mathrm{~m}$ Increase in GPE $=\mathrm{mgh}=60 \times 9.8 \times 1.2=\underline{705.6} \mathrm{~J}$

Whilst running up the steps, she developed an average power of 250 W. How long did it take her to get from the bottom to the top of the steps?
$E=P t$
$\mathrm{t}=\mathrm{E} \div \mathrm{P}=705.6 \div 250=\underline{\mathbf{2 . 8} \mathbf{s}}$ (1d.p.)

The generator of a nuclear power station supplies $4.32 \times 10^{13} \mathrm{~J}$ of electrical energy per day on average.

Calculate the average power output of the above generator.
Number of seconds in 1 day $=24 \times 60 \times 60=86,400 \mathrm{~s}$
Power, $P=E \div t=4.32 \times 10^{13} \div 86,400=500,000,000 \mathrm{~W}=\underline{5 \times 10^{8}} \mathrm{~W}$

A developer is considering building a wind farm close to the nuclear power station. Each of its wind turbines would deliver an average power output of 2 MW .

How many such turbines would the wind farm require for its power output to equal that of the generator of the nuclear power station?

Power output of nuclear power station generator, $\mathrm{P}_{1}=500 \mathrm{MW}$
Power output of wind turbine, $\mathrm{P}_{2}=2 \mathrm{MW}$
Number of wind turbines required $=500 \div 2=\underline{\mathbf{2 5 0}}$

Don't forget: $1 \mathrm{MW}=1,000,000 \mathrm{~W}=10^{6} \mathrm{~W}$

