## Chapter 1

## Atomic Structure and the Periodic Table

## Keywords

Compound
Substance that contains at least two different elements, chemically combined

Mixture
Made up of many substances that can be easily separated, that aren't chemically combined

## Element

A substance that cannot be broken down
chemically (and is made up of all the same type of atom)

Atom
The 'basic building block f an element - which cannot be chemically roken down

Subatomic Particle
Atoms are made up of three particles: protons neutrons and electrons Subatomic means "smalle than an atom".
(Law of) Conservation of Mass
he total mass or reactants equals the total mass of products formed

## Inert

Unreactive

## Displacement

Chemical reaction where one element 'swaps out' a less reactive element from a compound

## Trend

A change in properties in a general direction E.g. there is a trend of decreasing reactivity down the group

## Periodic Table

The Periodic Table is arranged in such a way that elements with the same properties can be found together in 'groups'

Elements in the same group have the same number of electrons in their outershell (these are known as valance electrons).

Elements in the same period have the same number of electron shells.

## Atomic Structure

The atomic number is the number of protons The number of electrons = number of protons. The number of neutrons = mass number - atomic number.


## Isotopes

These are different forms of the same element Same atomic number (same protons) Different mass number (change in neutrons)

## Relative atomic mass =

$\Sigma$ (isotope abundance\% x isotope mass number)
100

Isotopes of Carbon


## Separation Techniques

Chromatography - separates out different liquids. An Rf value can be calculated to compare the different parts.

Filtration - Separates a solid (S) from a liquid (L).

Crystallisation - Separates out a solid that has dissolved in a liquid. The liquid evaporates leaving the solid behind

Distillation - Separates out liquids that have different boiling points, or to keep a liquid from a S+L mixture.

## Balancing Equations

The same number of atoms of each element are needed on each side of an equation:

$|$| $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$ | 1 sodium on each side <br> 2 chlorine on left, 1 on right <br> $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$ |
| :--- | :--- |
| 1 sodium on left, 2 on right <br> 2 chlorine on each side |  |
| $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$ | 2 sodium on each side <br> 2 chlorine on each side |
| $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$ |  |

## Electron Configuration

Atoms fill to a maximum of 2 electrons in the first shell, 8 in the second and 8 in the third. Each shell is filled before starting the next shell.


## Group 1 (Alkali Metals)

React with water to form an alkaline solution: Lithium + water $\rightarrow$ lithium hydroxide + hydrogen

React vigorously when heated with chlorine gas: Sodium + chlorine $\rightarrow$ sodium chloride

Reactivity increases down the group - the outer negative electron is further from the positive nucleus so more easily lost.
Lower melting and boiling points down the group.

## Group 7 (Halogens)

Exist as pairs of atoms.
Less reactive down the group - the outer shell is further from the nucleus so harder to gain an electron.
Higher melting and boiling points down the group.
A more reactive halogen will displace a less reactive halogen.

## Group 0 (Noble Gases)

These elements have full outer shells so are inert.
Boiling point increases down the group as atoms have more electrons so stronger intermolecular forces form between molecules.

## Metals

Metals generally have the properties of : strong, dense, shiny, malleable, ductile, good conductors of heat and electricity.

Transition metals each have more than one ion, and generally form coloured compounds.
These metals are often used as catalysts, as they can alter the rate of a reaction without taking part themselves.

## Newlands vs Mendeleev

Newlands noticed similarities between elements with atomic weights that had a difference of seven. He called this The Law of Octaves.

Mendeleev arranged his table in order of atomic weight, and noticed a pattern emerging too. Where the elements didn't fit the pattern, he moved them (sometimes leaving gaps) - something Newlands didn't do.

## Chapter 1

## Atomic Structure and the Periodic Table

## Keywords

Compound
Substance that contains at east two different elements, chemically combined

Mixture
Made up of many substances that can be easily separated, that aren't chemically combined

## Element

A substance that cannot be broken down
chemically (and is made up of all the same type of atom)

The 'basic building block of an element - which cannot be chemically broken down

Subatomic Particle Atoms are made up of three particles: protons eutrons and electrons. ubatomic means "smaller than an atom".
Law of) Conservation of Mass
the total mass or
reactants equals the total mass of products formed

Inert
Unreactive

## Displacement

Chemical reaction where one element 'swaps out' a ess reactive element
rom a compound

## rend

change in properties in a general direction .g. there is a trend of decreasing reactivity down the group

## Periodic Table

Describe the position of carbon in the periodic table.


## Atomic Structure

If an atom has 3 protons, 4 neutrons and 3
electrons, what is its atomic mass? What element is this?

Isotopes
There are two atoms ${ }^{28} \mathrm{Si}$ and ${ }^{30} \mathrm{Si}$ of abundance $96 \%$ and $4 \%$, respectively. What is the relative atomic mass of Si?
Give your answer to 3s.f

## Separation Techniques

Describe how you would separate sodium chloride solution if you:
(a) Wanted only the solid
(b) Wanted both the solid and liquid

## Balancing Equations

$\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$

## Electron Configuration

Explain where an atom with an electronic configuration of $2,8,2$ is positioned in the periodic table.

## Group 1 (Alkali Metals)

Give the word and symbol equation for the reaction of potassium with water.

## Group 7 (Halogens)

Compare the trend of reactivity with that in group 1.

## Group 0 (Noble Gases)

Explain the reactivity of the elements in Group 0 .

## Metals

Give two differences between metals an non metals.

## Newland vs Mendeleev

Explain why we use Mendeleev's version of the Periodic table today, rather than Newland's

## Chapter 1

## Atomic Structure and the Periodic Table

## Keywords

Compound
Substance that contains at
east two different
elements, chemically combined

Mixture
Made up of many substances that can be easily separated, that aren't chemically combined

## Element

A substance that cannot be broken down
chemically (and is made up of all the same type o atom)

Atom
The 'basic building block of an element - which cannot be chemically broken down

Subatomic Particle Atoms are made up of three particles: protons eutrons and electrons. Subatomic means "smalle than an atom".
(Law of) Conservation of Mass
the total mass or
reactants equals the total mass of products formed

## nert

Unreactive

## Displacement

Chemical reaction where ne element 'swaps out' a ess reactive element
from a compound

## Trend

A change in properties in a general direction E.g. there is a trend of decreasing reactivity down the group

## Periodic Table

Describe the position of carbon in the periodic table.

Carbon is in group 4 because it has 4 electrons on its outer shell, and it is in period 2 as it has 2 shells of electrons.

## Atomic Structure

If an atom has 3 protons, 4 neutrons and 3
electrons, what is its atomic mass? What element is this?

Atomic mass $=7$
Lithium

## Isotopes

There are two atoms ${ }^{28} \mathrm{Si}$ and ${ }^{30} \mathrm{Si}$ of abundance $96 \%$ and $4 \%$, respectively. What is the relative atomic mass of Si ?
Give your answer to 3s.f.
$((28 * 96)+(30 * 4)) / 100=28.1$

## Separation Techniques

Describe how you would separate sodium chloride solution if you:
(a) Wanted only the solid
(b) Wanted both the solid and liquid

Description of crystallisation
Description of distillation

> Balancing Equations
> $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
> $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
> $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
> $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
> $\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
> $2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

## Electron Configuration

Explain where an atom with an electronic configuration of $2,8,2$ is positioned in the periodic table.

Group 2 (2 outer electrons), period 3 (3 shells)

## Group 1 (Alkali Metals)

Give the word and symbol equation for the reaction of potassium with water.

Potassium + water $->$ potassium hydroxide + hydrogen
$2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$

## Group 7 (Halogens)

Compare the trend of reactivity with that in group 1.

As you go down group 1 the reactivity increases as the outer electron is further away form the nucleus, easily lost. This is also the reason why the reactivity decreases down group 7 as it's harder to attract an electron.

## Group 0 (Noble Gases)

Explain the reactivity of the elements in Group 0 .
Not reactive (inert) as they have a full outer shell of electrons already.

## Metals

Give two differences between metals an non metals.

Any two different correct properties given

## Newland vs Mendeleev

Explain why we use Mendeleev's version of the Periodic table today, rather than Newland's

Mendeleev left gaps in his table as some of the elements didn't fit in his model. He predicted the properties of these elements... and was correct.

