AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: TRILOGY

Higher Tier
Physics Paper 2H
Friday 14 June 2019
Morning
Time allowed: 1 hour 15 minutes

Materials

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Figure 1

Figure $\mathbf{2}$ is a velocity-time graph for part of the runner's warm-up.
Figure 2

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$ Determine the total time for which the velocity of the runner was increasing.

[2 marks]
\qquad
\qquad
Time $=$ \qquad s

0	1.	2
Determine the deceleration of the runner.		

\qquad
\qquad
\qquad
\qquad
Deceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

Question 1 continues on the next page

The smart watch and mobile phone are connected to each other by a system

Bluetooth is wireless and uses electromagnetic waves for communication.
Suggest why the phone and watch being connected by a wireless system is an advantage when running.

| 0 | $\mathbf{1}$ | $\mathbf{4}$ Write down the equation that links frequency, wave speed and wavelength. |
| :--- | :--- | :--- | :--- |

| 0 | 1 | 5 |
| :--- | :--- | :--- | :--- | The electromagnetic waves have a frequency of 2400000000 Hz

The speed of electromagnetic waves is $300000000 \mathrm{~m} / \mathrm{s}$
Calculate the wavelength of the electromagnetic waves.
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelength = m

| 0 | 1 | 6 |
| :--- | :--- | :--- | Table 1 shows some information about four types of Bluetooth.

Table 1

Type	Power in milliwatts	Range in metres
$\mathbf{1}$	100	100
$\mathbf{2}$	2.50	10.0
$\mathbf{3}$	1.00	1.00
$\mathbf{4}$	0.50	0.50

Mobile phones use type 2 Bluetooth to communicate with other devices.
Suggest two reasons why.

1
\qquad
2 \qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{2}$ Figure $\mathbf{3}$ shows the equipment a teacher used to determine the speed of a |
| :--- | :--- | water wave.

The equipment includes:

- a ripple tank filled with water
- a wooden bar that creates ripples on the surface of the water
- a light source which causes a shadow of the ripples on the screen.

Figure 3

0	2	1
1		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The teacher put a plastic duck in the ripple tank as shown in Figure 4.
The plastic duck moved up and down as the waves in the water passed.
Figure 4

| $\mathbf{0}$ | $\mathbf{2} .2$ How does the movement of the plastic duck in Figure $\mathbf{4}$ demonstrate that water |
| :--- | :--- | waves are transverse?

\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ The teacher measured the maximum height and the minimum height of the plastic |
| :--- | :--- | :--- | duck above the screen as the wave passed.

The teacher repeated his measurements.
Table 2 shows the teacher's measurements.
Table 2

Maximum height in mm	509	513	511
Minimum height in mm	503	498	499

Calculate the mean amplitude of the water wave.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mean amplitude = \qquad mm

| 0 | $\mathbf{3}$ Some quantities are scalars and some are vectors. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ Which of the following quantities are scalars?

Tick (\checkmark) two boxes.

Displacement

Distance

Force

Speed

Velocity

$\mathbf{0}$	$\mathbf{3} .2$	Give the difference between a vector quantity and a scalar quantity.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ Give two factors that affect the momentum of each bumper car.

1 \qquad

2 \qquad
0

| $\mathbf{0}$ | $\mathbf{3} .4$ |
| :--- | :--- | The bumper cars crash into each other and stop.

Explain why both bumper cars stop after the crash.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	Figure 6
6		

The direction of the current in the wire is shown.
Figure 6

| 0 | 4 | 1 |
| :--- | :--- | :--- | There is a force on the wire due to the current in the magnetic field.

In which direction is the force on the wire?
Tick (\checkmark) one box.

\square

0	$\mathbf{4} .2$

1 \qquad

2 \qquad

0	$\mathbf{4}$	$\mathbf{3}$ The length of the wire in the magnetic field is 0.050 m

The force on the wire is 0.072 N
magnetic flux density $=360 \mathrm{mT}$
Calculate the current in the wire.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Current $=$ A

0	4	4

Figure 7

Explain why the coil rotates when there is a current in the coil.
\qquad

Turn over for the next question

0	5	Figure 8 shows some springs inside a mattress.

Figure 8

$\mathbf{0}$	$\mathbf{5} .1$	$\mathbf{1}$

Tick (\checkmark) one box.

Force \propto energy stored

Force \propto extension

Force \propto length

Force \propto spring constant \square

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$ The mean compression of each spring is $3.5 \times 10^{-3} \mathrm{~m}$

Calculate the spring constant of each spring in the mattress.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ \qquad
Unit $=$ \qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{4}$	For a given force, different springs compress by different amounts.

Explain what property of the springs would make the mattress soft.
\qquad
\qquad
\qquad
\qquad

| 0 | 6 | Figure 9 shows a free body diagram for an aeroplane flying at a constant speed and |
| :--- | :--- | :--- | at a constant height.

The speed of the aeroplane is much greater than the speed at which the aeroplane lands.

Figure 9

0	6	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ |
| :--- | :--- | :--- | The aeroplane lands at a speed of $80 \mathrm{~m} / \mathrm{s}$

After landing, the aeroplane takes 28 s to decelerate to a speed of $10 \mathrm{~m} / \mathrm{s}$ The mean resultant force on the aeroplane as it decelerates is 750000 N Calculate the mass of the aeroplane.
\qquad
Mass = \qquad kg

| 0 | 7 | Wave front diagrams are used to explain why light refracts when it passes from air |
| :--- | :--- | :--- | into glass.

Figure 10

0	$\mathbf{7}$.	1
Explain why the light refracts as it passes from air into glass.		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page

| 0 | $\mathbf{7}$ | $\mathbf{2}$ Figure 11 shows a ray of red light entering a glass prism. ${ }^{2}$. |
| :--- | :--- | :--- | :--- |

Figure 11

Complete the ray diagram to show the ray emerging from the glass prism.
$\begin{array}{lll}0 & \mathbf{7} . & 3\end{array}$ White light is made up of a continuous spectrum of different wavelengths that all travel at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in air.

Rainbows are produced because different wavelengths of light travel at different speeds in water.

Figure 12 shows the speed of different wavelengths of light in water.
Figure 12

Explain why violet light is refracted the most as it enters water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

There are no questions printed on this page

Do not write

DO NOT WRITE ON THIS PAGE

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

